您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (1): 1-9.doi: 10.6040/j.issn.1671-7554.0.2022.0947

• 基础医学 •    

基于SIRT1/PGC-1α通路探讨葡萄籽原花青素提取物对糖尿病肾脏疾病大鼠的保护作用

宋宜耘1,于慧1,高兆丽2,李宪花1   

  1. 1.山东大学齐鲁医院肾内科, 山东 济南 250012;2.山东大学齐鲁医院(青岛)肾内科, 山东 青岛 266035
  • 发布日期:2023-01-10
  • 通讯作者: 李宪花. E-mail:lixianhua7075@sina.com
  • 基金资助:
    山东省自然科学基金(ZR2019MH072)

Protective effects of grape seed proanthocyanidin extract on rats with diabetic kidney disease from the perspective of SIRT1/PGC-1α pathway

SONG Yiyun1, YU Hui1, GAO Zhaoli2, LI Xianhua1   

  1. 1. Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Nephrology, Qilu Hospital of Shandong University(Qingdao), Qingdao 266035, Shandong, China
  • Published:2023-01-10

摘要: 目的 探讨葡萄籽原花青素提取物(GSPE)通过调控沉默信息调节因子1(SIRT1)/过氧化物酶体增殖物激活受体γ辅助活化因子1α(PGC-1α)通路对糖尿病肾脏疾病(DKD)大鼠的保护作用。 方法 将40只雄性SD大鼠随机分为对照组、对照治疗组、模型组和治疗组,每组10只。腹腔注射链脲佐菌素(STZ)制备糖尿病大鼠模型,对照治疗组和治疗组灌胃GSPE,对照组和模型组灌胃等量生理盐水,连续给药12周,检测大鼠血糖、血肌酐和尿微量白蛋白;过碘酸希夫(PAS)染色观察肾组织病理学变化;透射电镜观察肾组织超微结构;采用Tunel染色法评估肾组织细胞凋亡水平;采用免疫组化法和Western blotting法检测肾组织中线粒体生物合成SIRT1/PGC-1α通路相关分子SIRT1、PGC-1α、核呼吸因子1(NRF1)和线粒体转录因子A(TFAM)的表达水平。 结果 模型组血糖[(39.38±4.18)mmol/L vs(8.21±3.57)mmol/L] 、血肌酐[(55.83±3.72)μmol/L vs(40.00±2.49)μmol/L]和尿微量白蛋白[(10.98±3.36)mg/L vs(1.22±0.23)mg/L]水平较对照组升高(P<0.05)。模型组肾组织损伤严重,线粒体碎片化增多,细胞凋亡[(31.81±8.84)% vs(0.50±0.35)%]多于对照组(P<0.05);同时肾脏中线粒体生物合成相关分子SIRT1(0.34±0.13 vs 0.66±0.06)、PGC-1α(0.32±0.03 vs 0.71±0.13)、NRF1(0.05±0.01 vs 0.21±0.02)和TFAM(0.06±0.03 vs 0.33±0.06)蛋白表达水平较对照组降低(P<0.05)。经GSPE干预后,治疗组血糖[(27.26±3.93)mmol/L vs(39.38±4.18)mmol/L]、血肌酐[(43.50±1.70)μmol/L vs(55.83±3.72)μmol/L]和尿微量白蛋白[(4.05±2.06)mg/L vs(10.98±3.36)mg/L]水平较模型组下降(P<0.05),细胞凋亡[(4.90±1.62)% vs(31.81±8.84)%]减少(P<0.05),肾脏中SIRT1(0.55±0.05 vs 0.34±0.13)、PGC-1α(0.62±0.14 vs 0.32±0.03)、NRF1(0.16±0.02 vs 0.05±0.01)和TFAM(0.26±0.06 vs 0.06±0.03)蛋白表达水平较模型组升高(P<0.05)。 结论 GSPE可能通过调控线粒体生物合成SIRT1/PGC-1α信号通路,改善DKD大鼠肾脏线粒体生物合成,从而发挥肾脏保护作用。

关键词: 糖尿病肾脏疾病, 线粒体生物合成, 葡萄籽原花青素提取物

Abstract: Objective To explore the protective effects of grape seed proanthocyanidin extract(GSPE)on rats with diabetic kidney disease(DKD)via silent information regulator 1(SIRT1)/peroxisome proliferator-activator receptor γ coactivator 1α(PGC-1α)signaling pathway. Methods A total of 40 male Sprague Dawley(SD)rats were randomly divided into control, control treatment, model and treatment groups, with 10 rats in each group. The diabetic rat models were induced by intraperitoneal injection of streptozotocin(STZ). Rats in the control treatment and treatment groups received GSPE gavage, while rats in the control and model groups were given equivalent amount of normal saline for 12 weeks. The blood glucose, serum creatinine and urinary microalbumin were detected. The pathological changes of renal tissue were observed with periodic acid Schiff(PAS)staining. Mitochondrial morphology was observed with a transmission electron microscopy. The apoptosis of renal tissue cells was evaluated with Tunel staining. The protein levels of SIRT1/PGC-1α signaling pathway-related molecules of mitochondrial biogenesis, including SIRT1, PGC-1α, nuclear respiratory factor 1(NRF1), and mitochondrial transcription factor A(TFAM)were determined with immunohistochemistry and Western blotting, respectively. Results Compared with the control group, the model group had significantly increased blood glucose [(39.38±4.18)mmol/L vs(8.21±3.57)mmol/L], serum creatinine [(55.83±3.72)μmol/L vs(40.00±2.49)μmol/L] and urinary microalbumin [(10.98±3.36)mg/L vs(1.22±0.23)mg/L](P<0.05). Compared with the control group, the model group had severer histopathological damages and mitochondrial fragmentation in the renal tissue, more significant apoptosis [(31.81±8.84)% vs(0.50±0.35)%](P<0.05), but significantly lower expressions of SIRT1(0.34±0.13 vs 0.66±0.06), PGC-1α(0.32±0.03 vs 0.71±0.13), NRF1(0.05±0.01 vs 0.21±0.02), and TFAM(0.06±0.03 vs 0.33±0.06)(P<0.05). Compared with the model group, the treatment group had significantly decreased levels of blood glucose [(27.26±3.93)mmol/L vs(39.38±4.18)mmol/L], serum creatinine [(43.50±1.70)μmol/L vs(55.83±3.72)μmol/L], urinary microalbumin [(4.05±2.06)mg/L vs(10.98±3.36)mg/L] and cell apoptosis [(4.90±1.62)% vs(31.81±8.84)%](P<0.05), but significantly increased expressions of SIRT1(0.55±0.05 vs 0.34±0.13), PGC-1α(0.62±0.14 vs 0.32±0.03), NRF1(0.16±0.02 vs 0.05±0.01), and TFAM( 0.26±0.06 vs 0.06±0.03)(P<0.05). Conclusion GSPE may improve mitochondrial biogenesis in DKD rats by regulating SIRT1/PGC-1α signaling pathway, and thus playing a protective role.

Key words: Diabetic kidney disease, Mitochondrial biogenesis, Grape seed proanthocyanidin extract

中图分类号: 

  • R587.2
[1] Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. N Engl J Med, 2016, 375(9): 905-906.
[2] 中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病临床诊疗中国指南[J]. 中华肾脏病杂志, 2021, 37(3): 255-304. Expert group of Chinese society of nephrology. Chinese guidelines for diagnosis and treatment of diabetic kidney disease [J]. Chinese Journal of Nephrology, 2021, 37(3): 255-304.
[3] Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney [J]. Nat Rev Nephrol, 2017, 13(10): 629-646.
[4] Guo P, Pi H, Xu S, et al. Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro [J]. Toxicol Sci, 2014, 142(1): 182-195.
[5] 夏华钦, 王亮, 吴芃, 等. 介导糖尿病肾病线粒体损伤的相关信号通路[J]. 中国病理生理杂志, 2020, 36(9): 1696-1703. XIA Huaqin, WANG Liang, WU Peng, et al. Signaling pathways involved in mediating mitochondrial damage in diabetic kidney disease [J]. Chinese Journal of Pathophysiology, 2020, 36(9): 1696-1703.
[6] 王来, 祝世功. 线粒体生成与脑缺血再灌注损伤的研究进展[J]. 中国病理生理杂志, 2016, 32(8): 1478-1483. WANG Lai, ZHU Shigong. Research progress of mitochondrial biogenesis and cerebral ischemia /reperfusion injury [J]. Chinese Journal of Pathophysiology, 2016, 32(8): 1478-1483.
[7] Tang BL. Sirt1 and the mitochondria [J]. Mol Cells, 2016, 39(2): 87-95.
[8] Gao WL, Li XH, Dun XP, et al. Grape seed proanthocyanidin extract ameliorates streptozotocin-induced cognitive and synaptic plasticity deficits by inhibiting oxidative stress and preserving AKT and ERK activities [J]. Curr Med Sci, 2020, 40(3): 434-443.
[9] Sul OJ, Kim JH, Lee T, et al. GSPE protects against bleomycin-induced pulmonary fibrosis in mice via ameliorating epithelial apoptosis through inhibition of oxidative stress [J]. Oxid Med Cell Longev, 2022, 2022: 8200189. doi: 10.1155/2022/8200189.
[10] Rajasekhar S, Subramanyam MVV, Asha Devi S. Grape seed proanthocyanidin extract suppresses oxidative stress in the rat pancreas of type-1 diabetes [J]. Arch Physiol Biochem, 2021, 11: 1-13. doi: 10.1080/13813455.2021.1894452.
[11] Sherif AA, Abdelhalim SZ, Salim EI. Immunohistochemical and biochemical alterations following administration of proanthocyanidin extract in rats hepatocellular carcinoma [J]. Biomed Pharmacother, 2017, 93: 1310-1319. doi: 10.1016/j.biopha.2017.07.039.
[12] Cao AH, Wang J, Gao HQ, et al. Beneficial clinical effects of grape seed proanthocyanidin extract on the progression of carotid atherosclerotic plaques [J]. J Geriatr Cardiol, 2015, 12(4): 417-423.
[13] Xu M, Chen X, Huang Z, et al. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway [J]. J Nutr Biochem, 2020, 84: 108462. doi: 10.1016/j.jnutbio.2020.108462.
[14] Gao Z, Liu G, Hu Z, et al. Grape seed proanthocyanidins protect against streptozotocin induced diabetic nephropathy by attenuating endoplasmic Reticulum stress induced apoptosis [J]. Mol Med Rep, 2018, 18(2): 1447-1454.
[15] 赵梦秋, 任尤楠, 陶善珺, 等. 丹酚酸B对糖尿病大鼠血管舒张功能、NF-κB活化及炎症因子表达的影响[J]. 中国病理生理杂志, 2018, 34(3): 481-487. ZHAO Mengqiu, REN Younan, TAO Shanjun, et al. Effect of salvianolic acid B on vasodilatory function, NF-κB activation and inflammatory cytokine expression in diabetic rats [J]. Chinese Journal of Pathophysiology, 2018, 34(3): 481-487.
[16] 程光辉, 王帅, 陈豪, 等. 水蛭素对糖尿病肾病大鼠脂代谢及血液流变学的影响[J]. 中医临床研究, 2022, 14(22): 37-40. CHENG Guanghui, WANG Shuai, CHEN Hao, et al. Effects of hirudin on lipid metabolism and hemorheology in rats with diabetic nephropathy [J]. Clinical Journal of Chinese Medicine, 2022, 14(22): 37-40.
[17] Giacco F, Brownlee M. Oxidative stress and diabetic complications [J]. Circ Res, 2010, 107(9): 1058-1070.
[18] Shen H, Wang W. Effect of glutathione liposomes on diabetic nephropathy based on oxidative stress and polyol pathway mechanism [J]. J Liposome Res, 2021, 31(4): 317-325.
[19] Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease [J]. Kidney Int, 2018, 93(4): 803-813.
[20] 赵鹏鸣, 王俭勤, 梁耀军. 内皮细胞损伤在糖尿病肾病发病机制中的作用[J]. 中国糖尿病杂志, 2016, 24(2): 169-172. ZHAO Pengming, WANG Jianqin, LIANG Yaojun. Role of endothelial cells injury in the pathogenesis of diabetic nephropathy [J]. Chinese Journal of Diabetes, 2016, 24(2): 169-172.
[21] 周迎生, 高妍, 李斌, 等. 高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征[J]. 中国实验动物学报, 2005, 13(3): 154-158. ZHOU Yingsheng, GAO Yan, LI Bin, et al. A rat model of type 2 diabetes mellitus induced by high fat chow and low dose streptozotocin injection [J]. Acta Laboratorium Animalis Scientia Sinica, 2005, 13(3): 154-158.
[22] Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention [J]. Toxicology, 2000, 148(2/3): 187-197.
[23] Bagchi D, Garg A, Krohn RL, et al. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro [J]. Res Commun Mol Pathol Pharmacol, 1997, 95(2): 179-189.
[24] Downing LE, Heidker RM, Caiozzi GC, et al. A grape seed procyanidin extract ameliorates fructose-induced hypertriglyceridemia in rats via enhanced fecal bile acid and cholesterol excretion and inhibition of hepatic lipogenesis [J]. PLoS One, 2015, 10(10): e0140267. doi: 10.1371/journal.pone.0140267.
[25] Busquets O, Carrasco M, Espinosa-Jiménez T, et al. GSPE pre-treatment protects against long-term Cafeteria diet-induced mitochondrial and inflammatory affectations in the Hippocampus of rats [J]. Nutr Neurosci, 2022, 25(12): 2627-2637.
[26] Lin KN, Jiang YL, Zhang SG, et al. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway [J]. Biomed Pharmacother, 2020, 125: 109885. doi: 10.1016/j.biopha.2020.109885.
[27] 王雪萍, 李医明, 王钊, 等. 原花青素类成分在防治2型糖尿病作用机制方面的研究进展[J]. 中国中药杂志, 2017, 42(20): 3866-3872. WANG Xueping, LI Yiming, WANG Zhao, et al. Advances of mechanism research on procyanidin in prevention and treatment of type 2 diabetes mellitus [J]. China Journal of Chinese Materia Medica, 2017, 42(20): 3866-3872.
[28] Ginés I, Gil-Cardoso K, DAddario Claudio, et al. Long-lasting effects of GSPE on ileal GLP-1R gene expression are associated with a hypomethylation of the GLP-1R promoter in female Wistar rats [J]. Biomolecules, 2019, 9(12): E865. doi: 10.3390/biom9120865.
[29] Grau-Bové C, Ginés I, Beltrán-Debón R, et al. Glucagon shows higher sensitivity than insulin to grapeseed proanthocyanidin extract(GSPE)treatment in Cafeteria-fed rats [J]. Nutrients, 2021, 13(4): 1084. doi: 10.3390/nu13041084.
[30] Liu W, Zhao S, Wang J, et al. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice [J]. Mol Nutr Food Res, 2017, 61(9). doi: 10.1002/mnfr.201601082.
[31] Liu M, Yun P, Hu Y, et al. Effects of grape seed proanthocyanidin extract on obesity [J]. Obes Facts, 2020, 13(2): 279-291.
[32] Nunnari J, Suomalainen A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159.
[33] Wang ZM, Ying ZL, Bosy-Westphal A, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure [J]. Am J Clin Nutr, 2010, 92(6): 1369-1377.
[34] Ahmad AA, Draves SO, Rosca M. Mitochondria in diabetic kidney disease [J]. Cells, 2021, 10(11): 2945. doi:10.3390/cells10112945.
[35] Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease [J]. Nat Rev Nephrol, 2018, 14(5): 291-312.
[36] Yang H, Bi Y, Xue L, et al. Multifaceted modulation of SIRT1 in cancer and inflammation [J]. Crit Rev Oncog, 2015, 20(1/2): 49-64.
[37] Wu YJ, Fang WJ, Pan S, et al. Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis [J]. Int Immunopharmacol, 2021, 101(pt a): 108175. doi: 10.1016/j.intimp.2021.108175.
[38] Zhang W, Huang Q, Zeng Z, et al. Sirt1 inhibits oxidative stress in vascular endothelial cells [J]. Oxid Med Cell Longev, 2017, 2017: 7543973. doi: 10.1155/2017/7543973.
[39] Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network [J]. Biochim Biophys Acta, 2011, 1813(7): 1269-1278.
[40] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J]. Nature, 2005, 434(7029): 113-118.
[41] 张佐, 肖位忠, 舒青龙, 等. 核呼吸因子的研究进展[J]. 生命科学, 2012, 24(5): 456-462. ZHANG Zuo, XIAO Weizhong, SHU Qinglong, et al. Progress of nuclear respiratory factors [J]. Chinese Bulletin of Life Sciences, 2012, 24(5): 456-462.
[42] Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA [J]. Annu Rev Biochem, 2016, 85: 133-160. doi: 10.1146/annurev-biochem-060815-014402.
[43] Hao LY, Zhong W, Dong HB, et al. ATF4 activation promotes hepatic mitochondrial dysfunction by repressing NRF1-TFAM signalling in alcoholic steatohepatitis [J]. Gut, 2021, 70(10): 1933-1945.
[44] Yuan Y, Cruzat VF, Newsholme P, et al. Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis [J]. Mech Ageing Dev, 2016, 155: 10-21. doi: 10.1016/j.mad.2016.02.003.
[45] 张培培, 鲁科达, 夏虹, 等. 加味黄风汤对糖尿病肾病大鼠肾组织SIRT1及PGC-1α表达的影响[J]. 中华中医药杂志, 2019, 34(2): 589-593. ZHANG Peipei, LU Keda, XIA Hong, et al. Effects of Jiawei Huangfeng Decoction on the expression of SIRT1 and PGC-1α in renal tissue of rats with diabetic nephropathy [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(2): 589-593.
[1] 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25.
[2] 丁华琳,李扬扬,于丰源,战伟伟,于苏国. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报 (医学版), 2020, 58(3): 75-80.
[3] 巩璐伟,周丽珍,苏国海. 培哚普利通过调节Akt-FoxO1通路保护糖尿病性心肌病大鼠心功能损伤[J]. 山东大学学报(医学版), 2017, 55(10): 65-70.
[4] 赵蕙琛,柴家超,张亮,袁明振,彭力,刘元涛. 糖尿病大鼠阴茎海绵体硫化氢含量及其合成酶表达的变化[J]. 山东大学学报(医学版), 2016, 54(10): 25-28.
[5] 陈志新,王颖,曹新冉, 黑乃豪,李俊龙,董波,关广聚. 非肽类Ang(1-7)受体激动剂AVE0991对大鼠糖尿病肾病的保护作用[J]. 山东大学学报(医学版), 2016, 54(10): 29-33.
[6] 史蕊,孙佩,王璐璐,丁琳,夏金,王燕,逄曙光. 鼠神经生长因子联合维生素D、甲钴胺治疗糖尿病周围神经病变的临床观察[J]. 山东大学学报(医学版), 2016, 54(4): 64-67.
[7] 毕大鹏1,嵇高德1,张洪星2 . 通心络胶囊对早期糖尿病肾病患者胱抑素C的影响[J]. 山东大学学报(医学版), 2013, 51(7): 67-69.
[8] 周雁1,郭立新1,周璐2,汪耀1,牟忠卿1,王晓霞1,于冬妮1,张丽娜11,周璐2,汪耀1,牟忠卿1,王晓霞1,于冬妮1,张丽娜1. 老年2型糖尿病患者周围神经病变的影响因素[J]. 山东大学学报(医学版), 2012, 50(6): 1-4.
[9] 王倩1,张莹1,侯为开1,张莉2,徐华3,王鹏4,于珊1, 刘骞1,黄庆先1. 2型糖尿病性腹泻与肠神经系统病变关系的探讨[J]. 山东大学学报(医学版), 2011, 49(8): 13-.
[10] 孔德焕1,于进堂2,高美娟1,李波1,卞丽香1,李明龙3,刘明4,于桂娜1. 羟苯磺酸钙对糖尿病大鼠主动脉的保护作用[J]. 山东大学学报(医学版), 2010, 48(10): 4-.
[11] 侯亮,刘雪平,袁树华,王美霞,徐松. 胰岛素抵抗大鼠血管AGEs水平及其损伤机制和吡格列酮的保护作用[J]. 山东大学学报(医学版), 2010, 48(4): 5-9.
[12] 张月华,赵新国,岳玉国,吕英俊. 诺和锐30特充强化治疗初诊2型糖尿病疗效观察[J]. 山东大学学报(医学版), 2010, 48(4): 160-.
[13] 李倩,汪翼,孙书珍,陈瑶,王立俊. 糖尿病大鼠心肌胶原代谢的变化及与MMP-2/TIMP-2表达的关系[J]. 山东大学学报(医学版), 2010, 48(3): 1-6.
[14] 李文斌1,崔美玉1,许冬梅1,关广聚2. 二基肽酶IV酶活性与糖尿病肾病的相关性[J]. 山东大学学报(医学版), 2010, 48(3): 12-14.
[15] . 2,5二羟苯磺酸钙对糖尿病大鼠心肌保护作用的研究[J]. 山东大学学报(医学版), 2009, 47(10): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!