山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (1): 1-9.doi: 10.6040/j.issn.1671-7554.0.2022.0947
• 基础医学 •
宋宜耘1,于慧1,高兆丽2,李宪花1
SONG Yiyun1, YU Hui1, GAO Zhaoli2, LI Xianhua1
摘要: 目的 探讨葡萄籽原花青素提取物(GSPE)通过调控沉默信息调节因子1(SIRT1)/过氧化物酶体增殖物激活受体γ辅助活化因子1α(PGC-1α)通路对糖尿病肾脏疾病(DKD)大鼠的保护作用。 方法 将40只雄性SD大鼠随机分为对照组、对照治疗组、模型组和治疗组,每组10只。腹腔注射链脲佐菌素(STZ)制备糖尿病大鼠模型,对照治疗组和治疗组灌胃GSPE,对照组和模型组灌胃等量生理盐水,连续给药12周,检测大鼠血糖、血肌酐和尿微量白蛋白;过碘酸希夫(PAS)染色观察肾组织病理学变化;透射电镜观察肾组织超微结构;采用Tunel染色法评估肾组织细胞凋亡水平;采用免疫组化法和Western blotting法检测肾组织中线粒体生物合成SIRT1/PGC-1α通路相关分子SIRT1、PGC-1α、核呼吸因子1(NRF1)和线粒体转录因子A(TFAM)的表达水平。 结果 模型组血糖[(39.38±4.18)mmol/L vs(8.21±3.57)mmol/L] 、血肌酐[(55.83±3.72)μmol/L vs(40.00±2.49)μmol/L]和尿微量白蛋白[(10.98±3.36)mg/L vs(1.22±0.23)mg/L]水平较对照组升高(P<0.05)。模型组肾组织损伤严重,线粒体碎片化增多,细胞凋亡[(31.81±8.84)% vs(0.50±0.35)%]多于对照组(P<0.05);同时肾脏中线粒体生物合成相关分子SIRT1(0.34±0.13 vs 0.66±0.06)、PGC-1α(0.32±0.03 vs 0.71±0.13)、NRF1(0.05±0.01 vs 0.21±0.02)和TFAM(0.06±0.03 vs 0.33±0.06)蛋白表达水平较对照组降低(P<0.05)。经GSPE干预后,治疗组血糖[(27.26±3.93)mmol/L vs(39.38±4.18)mmol/L]、血肌酐[(43.50±1.70)μmol/L vs(55.83±3.72)μmol/L]和尿微量白蛋白[(4.05±2.06)mg/L vs(10.98±3.36)mg/L]水平较模型组下降(P<0.05),细胞凋亡[(4.90±1.62)% vs(31.81±8.84)%]减少(P<0.05),肾脏中SIRT1(0.55±0.05 vs 0.34±0.13)、PGC-1α(0.62±0.14 vs 0.32±0.03)、NRF1(0.16±0.02 vs 0.05±0.01)和TFAM(0.26±0.06 vs 0.06±0.03)蛋白表达水平较模型组升高(P<0.05)。 结论 GSPE可能通过调控线粒体生物合成SIRT1/PGC-1α信号通路,改善DKD大鼠肾脏线粒体生物合成,从而发挥肾脏保护作用。
中图分类号:
[1] Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. N Engl J Med, 2016, 375(9): 905-906. [2] 中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病临床诊疗中国指南[J]. 中华肾脏病杂志, 2021, 37(3): 255-304. Expert group of Chinese society of nephrology. Chinese guidelines for diagnosis and treatment of diabetic kidney disease [J]. Chinese Journal of Nephrology, 2021, 37(3): 255-304. [3] Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney [J]. Nat Rev Nephrol, 2017, 13(10): 629-646. [4] Guo P, Pi H, Xu S, et al. Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro [J]. Toxicol Sci, 2014, 142(1): 182-195. [5] 夏华钦, 王亮, 吴芃, 等. 介导糖尿病肾病线粒体损伤的相关信号通路[J]. 中国病理生理杂志, 2020, 36(9): 1696-1703. XIA Huaqin, WANG Liang, WU Peng, et al. Signaling pathways involved in mediating mitochondrial damage in diabetic kidney disease [J]. Chinese Journal of Pathophysiology, 2020, 36(9): 1696-1703. [6] 王来, 祝世功. 线粒体生成与脑缺血再灌注损伤的研究进展[J]. 中国病理生理杂志, 2016, 32(8): 1478-1483. WANG Lai, ZHU Shigong. Research progress of mitochondrial biogenesis and cerebral ischemia /reperfusion injury [J]. Chinese Journal of Pathophysiology, 2016, 32(8): 1478-1483. [7] Tang BL. Sirt1 and the mitochondria [J]. Mol Cells, 2016, 39(2): 87-95. [8] Gao WL, Li XH, Dun XP, et al. Grape seed proanthocyanidin extract ameliorates streptozotocin-induced cognitive and synaptic plasticity deficits by inhibiting oxidative stress and preserving AKT and ERK activities [J]. Curr Med Sci, 2020, 40(3): 434-443. [9] Sul OJ, Kim JH, Lee T, et al. GSPE protects against bleomycin-induced pulmonary fibrosis in mice via ameliorating epithelial apoptosis through inhibition of oxidative stress [J]. Oxid Med Cell Longev, 2022, 2022: 8200189. doi: 10.1155/2022/8200189. [10] Rajasekhar S, Subramanyam MVV, Asha Devi S. Grape seed proanthocyanidin extract suppresses oxidative stress in the rat pancreas of type-1 diabetes [J]. Arch Physiol Biochem, 2021, 11: 1-13. doi: 10.1080/13813455.2021.1894452. [11] Sherif AA, Abdelhalim SZ, Salim EI. Immunohistochemical and biochemical alterations following administration of proanthocyanidin extract in rats hepatocellular carcinoma [J]. Biomed Pharmacother, 2017, 93: 1310-1319. doi: 10.1016/j.biopha.2017.07.039. [12] Cao AH, Wang J, Gao HQ, et al. Beneficial clinical effects of grape seed proanthocyanidin extract on the progression of carotid atherosclerotic plaques [J]. J Geriatr Cardiol, 2015, 12(4): 417-423. [13] Xu M, Chen X, Huang Z, et al. Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway [J]. J Nutr Biochem, 2020, 84: 108462. doi: 10.1016/j.jnutbio.2020.108462. [14] Gao Z, Liu G, Hu Z, et al. Grape seed proanthocyanidins protect against streptozotocin induced diabetic nephropathy by attenuating endoplasmic Reticulum stress induced apoptosis [J]. Mol Med Rep, 2018, 18(2): 1447-1454. [15] 赵梦秋, 任尤楠, 陶善珺, 等. 丹酚酸B对糖尿病大鼠血管舒张功能、NF-κB活化及炎症因子表达的影响[J]. 中国病理生理杂志, 2018, 34(3): 481-487. ZHAO Mengqiu, REN Younan, TAO Shanjun, et al. Effect of salvianolic acid B on vasodilatory function, NF-κB activation and inflammatory cytokine expression in diabetic rats [J]. Chinese Journal of Pathophysiology, 2018, 34(3): 481-487. [16] 程光辉, 王帅, 陈豪, 等. 水蛭素对糖尿病肾病大鼠脂代谢及血液流变学的影响[J]. 中医临床研究, 2022, 14(22): 37-40. CHENG Guanghui, WANG Shuai, CHEN Hao, et al. Effects of hirudin on lipid metabolism and hemorheology in rats with diabetic nephropathy [J]. Clinical Journal of Chinese Medicine, 2022, 14(22): 37-40. [17] Giacco F, Brownlee M. Oxidative stress and diabetic complications [J]. Circ Res, 2010, 107(9): 1058-1070. [18] Shen H, Wang W. Effect of glutathione liposomes on diabetic nephropathy based on oxidative stress and polyol pathway mechanism [J]. J Liposome Res, 2021, 31(4): 317-325. [19] Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease [J]. Kidney Int, 2018, 93(4): 803-813. [20] 赵鹏鸣, 王俭勤, 梁耀军. 内皮细胞损伤在糖尿病肾病发病机制中的作用[J]. 中国糖尿病杂志, 2016, 24(2): 169-172. ZHAO Pengming, WANG Jianqin, LIANG Yaojun. Role of endothelial cells injury in the pathogenesis of diabetic nephropathy [J]. Chinese Journal of Diabetes, 2016, 24(2): 169-172. [21] 周迎生, 高妍, 李斌, 等. 高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征[J]. 中国实验动物学报, 2005, 13(3): 154-158. ZHOU Yingsheng, GAO Yan, LI Bin, et al. A rat model of type 2 diabetes mellitus induced by high fat chow and low dose streptozotocin injection [J]. Acta Laboratorium Animalis Scientia Sinica, 2005, 13(3): 154-158. [22] Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention [J]. Toxicology, 2000, 148(2/3): 187-197. [23] Bagchi D, Garg A, Krohn RL, et al. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro [J]. Res Commun Mol Pathol Pharmacol, 1997, 95(2): 179-189. [24] Downing LE, Heidker RM, Caiozzi GC, et al. A grape seed procyanidin extract ameliorates fructose-induced hypertriglyceridemia in rats via enhanced fecal bile acid and cholesterol excretion and inhibition of hepatic lipogenesis [J]. PLoS One, 2015, 10(10): e0140267. doi: 10.1371/journal.pone.0140267. [25] Busquets O, Carrasco M, Espinosa-Jiménez T, et al. GSPE pre-treatment protects against long-term Cafeteria diet-induced mitochondrial and inflammatory affectations in the Hippocampus of rats [J]. Nutr Neurosci, 2022, 25(12): 2627-2637. [26] Lin KN, Jiang YL, Zhang SG, et al. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway [J]. Biomed Pharmacother, 2020, 125: 109885. doi: 10.1016/j.biopha.2020.109885. [27] 王雪萍, 李医明, 王钊, 等. 原花青素类成分在防治2型糖尿病作用机制方面的研究进展[J]. 中国中药杂志, 2017, 42(20): 3866-3872. WANG Xueping, LI Yiming, WANG Zhao, et al. Advances of mechanism research on procyanidin in prevention and treatment of type 2 diabetes mellitus [J]. China Journal of Chinese Materia Medica, 2017, 42(20): 3866-3872. [28] Ginés I, Gil-Cardoso K, DAddario Claudio, et al. Long-lasting effects of GSPE on ileal GLP-1R gene expression are associated with a hypomethylation of the GLP-1R promoter in female Wistar rats [J]. Biomolecules, 2019, 9(12): E865. doi: 10.3390/biom9120865. [29] Grau-Bové C, Ginés I, Beltrán-Debón R, et al. Glucagon shows higher sensitivity than insulin to grapeseed proanthocyanidin extract(GSPE)treatment in Cafeteria-fed rats [J]. Nutrients, 2021, 13(4): 1084. doi: 10.3390/nu13041084. [30] Liu W, Zhao S, Wang J, et al. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice [J]. Mol Nutr Food Res, 2017, 61(9). doi: 10.1002/mnfr.201601082. [31] Liu M, Yun P, Hu Y, et al. Effects of grape seed proanthocyanidin extract on obesity [J]. Obes Facts, 2020, 13(2): 279-291. [32] Nunnari J, Suomalainen A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159. [33] Wang ZM, Ying ZL, Bosy-Westphal A, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure [J]. Am J Clin Nutr, 2010, 92(6): 1369-1377. [34] Ahmad AA, Draves SO, Rosca M. Mitochondria in diabetic kidney disease [J]. Cells, 2021, 10(11): 2945. doi:10.3390/cells10112945. [35] Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease [J]. Nat Rev Nephrol, 2018, 14(5): 291-312. [36] Yang H, Bi Y, Xue L, et al. Multifaceted modulation of SIRT1 in cancer and inflammation [J]. Crit Rev Oncog, 2015, 20(1/2): 49-64. [37] Wu YJ, Fang WJ, Pan S, et al. Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis [J]. Int Immunopharmacol, 2021, 101(pt a): 108175. doi: 10.1016/j.intimp.2021.108175. [38] Zhang W, Huang Q, Zeng Z, et al. Sirt1 inhibits oxidative stress in vascular endothelial cells [J]. Oxid Med Cell Longev, 2017, 2017: 7543973. doi: 10.1155/2017/7543973. [39] Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network [J]. Biochim Biophys Acta, 2011, 1813(7): 1269-1278. [40] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J]. Nature, 2005, 434(7029): 113-118. [41] 张佐, 肖位忠, 舒青龙, 等. 核呼吸因子的研究进展[J]. 生命科学, 2012, 24(5): 456-462. ZHANG Zuo, XIAO Weizhong, SHU Qinglong, et al. Progress of nuclear respiratory factors [J]. Chinese Bulletin of Life Sciences, 2012, 24(5): 456-462. [42] Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA [J]. Annu Rev Biochem, 2016, 85: 133-160. doi: 10.1146/annurev-biochem-060815-014402. [43] Hao LY, Zhong W, Dong HB, et al. ATF4 activation promotes hepatic mitochondrial dysfunction by repressing NRF1-TFAM signalling in alcoholic steatohepatitis [J]. Gut, 2021, 70(10): 1933-1945. [44] Yuan Y, Cruzat VF, Newsholme P, et al. Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis [J]. Mech Ageing Dev, 2016, 155: 10-21. doi: 10.1016/j.mad.2016.02.003. [45] 张培培, 鲁科达, 夏虹, 等. 加味黄风汤对糖尿病肾病大鼠肾组织SIRT1及PGC-1α表达的影响[J]. 中华中医药杂志, 2019, 34(2): 589-593. ZHANG Peipei, LU Keda, XIA Hong, et al. Effects of Jiawei Huangfeng Decoction on the expression of SIRT1 and PGC-1α in renal tissue of rats with diabetic nephropathy [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(2): 589-593. |
[1] | 吕丽,姜璐,陈诗鸿,庄向华,宋玉文,王殿辉,安文娟,李倩,潘喆. 210例绝经后2型糖尿病发生骨质疏松的相关因素[J]. 山东大学学报 (医学版), 2021, 59(7): 19-25. |
[2] | 丁华琳,李扬扬,于丰源,战伟伟,于苏国. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报 (医学版), 2020, 58(3): 75-80. |
[3] | 巩璐伟,周丽珍,苏国海. 培哚普利通过调节Akt-FoxO1通路保护糖尿病性心肌病大鼠心功能损伤[J]. 山东大学学报(医学版), 2017, 55(10): 65-70. |
[4] | 赵蕙琛,柴家超,张亮,袁明振,彭力,刘元涛. 糖尿病大鼠阴茎海绵体硫化氢含量及其合成酶表达的变化[J]. 山东大学学报(医学版), 2016, 54(10): 25-28. |
[5] | 陈志新,王颖,曹新冉, 黑乃豪,李俊龙,董波,关广聚. 非肽类Ang(1-7)受体激动剂AVE0991对大鼠糖尿病肾病的保护作用[J]. 山东大学学报(医学版), 2016, 54(10): 29-33. |
[6] | 史蕊,孙佩,王璐璐,丁琳,夏金,王燕,逄曙光. 鼠神经生长因子联合维生素D、甲钴胺治疗糖尿病周围神经病变的临床观察[J]. 山东大学学报(医学版), 2016, 54(4): 64-67. |
[7] | 毕大鹏1,嵇高德1,张洪星2 . 通心络胶囊对早期糖尿病肾病患者胱抑素C的影响[J]. 山东大学学报(医学版), 2013, 51(7): 67-69. |
[8] | 周雁1,郭立新1,周璐2,汪耀1,牟忠卿1,王晓霞1,于冬妮1,张丽娜11,周璐2,汪耀1,牟忠卿1,王晓霞1,于冬妮1,张丽娜1. 老年2型糖尿病患者周围神经病变的影响因素[J]. 山东大学学报(医学版), 2012, 50(6): 1-4. |
[9] | 王倩1,张莹1,侯为开1,张莉2,徐华3,王鹏4,于珊1, 刘骞1,黄庆先1. 2型糖尿病性腹泻与肠神经系统病变关系的探讨[J]. 山东大学学报(医学版), 2011, 49(8): 13-. |
[10] | 孔德焕1,于进堂2,高美娟1,李波1,卞丽香1,李明龙3,刘明4,于桂娜1. 羟苯磺酸钙对糖尿病大鼠主动脉的保护作用[J]. 山东大学学报(医学版), 2010, 48(10): 4-. |
[11] | 侯亮,刘雪平,袁树华,王美霞,徐松. 胰岛素抵抗大鼠血管AGEs水平及其损伤机制和吡格列酮的保护作用[J]. 山东大学学报(医学版), 2010, 48(4): 5-9. |
[12] | 张月华,赵新国,岳玉国,吕英俊. 诺和锐30特充强化治疗初诊2型糖尿病疗效观察[J]. 山东大学学报(医学版), 2010, 48(4): 160-. |
[13] | 李倩,汪翼,孙书珍,陈瑶,王立俊. 糖尿病大鼠心肌胶原代谢的变化及与MMP-2/TIMP-2表达的关系[J]. 山东大学学报(医学版), 2010, 48(3): 1-6. |
[14] | 李文斌1,崔美玉1,许冬梅1,关广聚2. 二基肽酶IV酶活性与糖尿病肾病的相关性[J]. 山东大学学报(医学版), 2010, 48(3): 12-14. |
[15] | . 2,5二羟苯磺酸钙对糖尿病大鼠心肌保护作用的研究[J]. 山东大学学报(医学版), 2009, 47(10): 9-14. |
|