您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (10): 9-16.doi: 10.6040/j.issn.1671-7554.0.2023.0050

• • 上一篇    下一篇

鹿苓安肾颗粒对慢性肾功能衰竭大鼠炎症反应及细胞凋亡的影响

杨元凤1,熊高才2,黎豫川1,罗玉玲1,张敬杰3   

  1. 1.贵州中医药大学第二附属医院药学部, 贵州 贵阳 550003;2.贵州省第三人民医院呼吸与危重症科, 贵州 贵阳 550000;3.贵州中医药大学药学院, 贵州 贵阳 550025
  • 发布日期:2023-11-08
  • 通讯作者: 张敬杰. E-mail:374037510@qq.com
  • 基金资助:
    贵阳市科技计划项目(筑科合同[2020]-18-4号)

Effects of Luling Anshen Granule on the inflammatory response and cell apoptosis in rats with chronic renal failure

YANG Yuanfeng1, XIONG Gaocai2, LI Yuchuan1, LUO Yuling1, ZHANG Jingjie3   

  1. 1. Department of Pharmacy, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou, China;
    2. Department of Respiratory and Critical Care, The Third Peoples Hospital of Guizhou Province, Guiyang 550000, Guizhou, China;
    3. School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
  • Published:2023-11-08

摘要: 目的 探讨鹿苓安肾颗粒对腺嘌呤诱导的慢性肾功能衰竭(CRF)大鼠的影响及其潜在机制。 方法 将SD雄性大鼠分成6组:对照组,模型组,阳性药物组(尿毒清颗粒,2.25 g/kg),鹿苓安肾颗粒低、中、高剂量组(2.5、5、10 g/kg),每组10只。除对照组外,其他各组大鼠均采用灌胃2.5%腺嘌呤混悬液建立CRF大鼠模型,造模成功后给予相应药物灌胃干预,1次/d,连续28 d。观察并记录大鼠一般情况;腹主动脉取血,测定血清中血尿素氮(BUN)和血肌酐(Scr)水平和24 h尿蛋白水平;酶联免疫吸附测定法(ELISA)检测血清中白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)水平;苏木精-伊红(HE)染色观察肾脏组织病理学变化;免疫组化检测肾脏组织中碱性成纤维细胞生长因子(bFGF)水平;实时荧光定量PCR(qRT-PCR)和Western blotting检测肾脏组织中Bax、Bcl-2和Caspase-3 mRNA及Bax、Bcl-2和Cleaved-Caspase-3蛋白表达水平。 结果 与对照组比较,模型组大鼠肾脏组织损伤严重,24 h尿蛋白水平,血清中BUN、Scr、IL-1β、IL-6和TNF-α水平,肾脏组织中Bax/Bcl-2、Caspase-3 mRNA及Bax/Bcl-2和Cleaved-Caspase-3蛋白表达水平及bFGF水平均明显上升(P<0.05)。与模型组比较,鹿苓安肾颗粒低、中、高剂量组和阳性药物组大鼠肾脏组织损伤均明显减轻,24 h尿蛋白水平,血清中BUN、Scr、IL-1β、IL-6和TNF-α水平,肾脏组织中Bax/Bcl-2、Caspase-3 mRNA及Bax/Bcl-2和Cleaved-Caspase-3蛋白表达水平及bFGF水平均明显下降(P<0.05),且呈剂量依赖性。 结论 鹿苓安肾颗粒可抑制CRF大鼠肾脏组织炎症反应、细胞凋亡和纤维化,改善肾功能,从而对CRF大鼠肾脏具有一定的保护作用。

关键词: 慢性肾功能衰竭, 鹿苓安肾颗粒, 炎症反应, 细胞凋亡, 肾纤维化

Abstract: Objective To investigate the effects of Luling Anshen Granule on adenine-induced chronic renal failure(CRF)rats and its potential mechanism. Methods Male SD rats were divided into 6 groups: control group, model group, positive drug group(Niaoduqing Granule, 2.25 g/kg), low-, medium- and high-dose Luling Anshen Granule groups(2.5, 5, 10 g/kg), with 10 rats in each group. Except the control group, the other groups were given 2.5% adenine suspension by gavage to establish CRF models, and corresponding drugs were given by gavage once a day for a consecutive of 28 days after successful modeling. The general condition of rats was observed and recorded. Blood was sampled from the abdominal aorta to measure the levels of blood urea nitrogen(BUN)and serum creatinine(Scr), and the level of 24-hour urinary protein was also measured. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)in serum were determined with ELISA. Histopathological changes of kidney tissues were observed with HE staining. The level of basic fibroblast growth factor(bFGF)in renal tissues was detected with immunohistochemistry. The mRNA expressions of Bax, Bcl-2 and Caspase-3, and the protein expressions of Bax, Bcl-2 and Cleaved-Caspase-3 in renal tissues were detected with qRT-PCR or Western blotting. Results Compared with the control group, the model group had more serious renal injury, and significantly increased levels of 24-hour urinary protein, BUN, Scr, IL-1β, IL-6, TNF-α, mRNA expressions of Bax/Bcl-2 and Caspase-3, protein expressions of Bax/Bcl-2 and Cleaved-Caspase-3, and bFGF(P<0.05). Compared with the model group, the Luling Anshen Granule intervention groups and positive drug group had significantly alleviated renal injury, and significantly decreased levels of the above indexes in a dose-dependent manner(P<0.05). Conclusion Luling Anshen Granule can inhibit the inflammatory response, cell apoptosis and fibrosis in kidney tissues of CRF rats and improve the renal function, thus having a protective effect on the kidney.

Key words: Chronic renal failure, Luling Anshen Granule, Inflammatory response, Cell apoptosis, Renal fibrosis

中图分类号: 

  • R285.5
[1] Häckl D, Kossack K, Schoenfelder T. Prevalence, costs of medical treatment and modalities of dialysis-dependent chronic renal failure in Germany: comparison of dialysis care of nursing home residents and in outpatient units [J]. Gesundheitswesen, 2021, 83(10): 818-828.
[2] Charles C, Ferris AH. Chronic kidney disease [J]. Prim Care, 2020, 47(4): 585-595.
[3] Brunet P. Treatment of chronic kidney failure by haemodialysis [J]. Soins, 2018, 63(826): 21-23.
[4] Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis [J]. Nephrol Dial Transplant, 2018, 33(3): 35-40.
[5] Li H, Feng Y, Sun W, et al. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice [J]. Int J Biol Macromol, 2021, 170: 652-663. doi: 10.1016/j.ijbiomac.2020.12.159.
[6] 何勇, 吴荣艳, 刘德慧, 等. 冬瓜皮炭对慢性肾衰竭大鼠肾功能的保护作用[J]. 中成药, 2019, 41(9): 2074-2078. HE Yong, WU Rongyan, LIU Dehui, et al. Protective effects of Benincasae Exocarpium charcoal on renal functions in rats with chronic kidney failure [J]. Chinese Traditional Patent Medicine, 2019, 41(9): 2074-2078.
[7] Li QM, Chena HR, Zha XQ, et al. Renoprotective effect of Chinese chive polysaccharides in adenine-induced chronic renal failure [J]. Int J Biol Macromol, 2018, 106: 988-993. doi: 10.1016/j.ijbiomac.2017.08.101.
[8] 车蕙芳, 刘睿. 葛根素注射液与尿毒清颗粒合用对慢性肾功能衰竭的疗效观察[J]. 中药材, 2015, 38(8): 1784-1785.
[9] Lv JC, Zhang LX. Prevalence and disease burden of chronic kidney disease [J]. Adv Exp Med Biol, 2019, 1165: 3-15. doi: 10.1007/978-981-13-8871-2_1.
[10] Naouaoui S, Fadili W, Chettati M, et al. Medicinal plants and renal failure: a case-control study [J]. Clin Nephrol, 2020, 94(3): 142-149.
[11] Olsen E, Galen GV. Chronic renal failure-causes, clinical findings, treatments and prognosis [J]. Vet Clin North Am Equine Pract, 2022, 38(1): 25-46.
[12] Shoshtari FS, Biranvand S, Rezaei L, et al. The impact of hemodialysis on retinal and choroidal thickness in patients with chronic renal failure [J]. Int Ophthalmol, 2021, 41(5): 1763-1771.
[13] Coemans M, Callemeyn J, Naesens M. Long-term survival after kidney transplantation [J]. N Engl J Med, 2022, 386(5): 497-498.
[14] Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease [J]. Nat Rev Nephrol, 2020, 16(5): 269-288.
[15] Ren H, Sun R, Wang J. Relationship of melatonin level, oxidative stress and inflammatory status with osteoporosis in maintenance hemodialysis of chronic renal failure [J]. Exp Ther Med, 2018, 15(6): 5183-5188.
[16] Qian Q. Inflammation: a key contributor to the genesis and progression of chronic kidney disease [J]. Contrib Nephrol, 2017, 191: 72-83. doi: 10.1159/000479257.
[17] Petreski T, Piko N, Ekart R, et al. Review on inflammation markers in chronic kidney disease [J]. Biomedicines, 2021, 9(2): 182. doi: 10.3390/biomedicines9020182.
[18] 庞欣, 张建伟, 韩佳瑞, 等. 丹酚酸B调节Bax/Bcl-2的表达对系膜增生性肾炎大鼠肾脏保护作用及机制[J].安徽医科大学学报, 2019, 54(8): 1221-1226. PANG Xin, ZHANG Jianwei, HAN Jiarui, et al. The renal protective effect and mechanism of Salvianolic acid B on mesangial proliferative glomerulonephritis rats by regulating the expression of Bax/Bcl-2 [J]. Acta Univ Med Anhui, 2019, 54(8): 1221-1226.
[19] Zhao XC, Livingston MJ, Liang XL, et al. Cell apoptosis and autophagy in renal fibrosis [J]. Adv Exp Med Biol, 2019, 1165: 557-584. doi: 10.1007/978-981-13-8871-2_28.
[20] Weng CM, Li Q, Chen KJ, et al. Bleomycin induces epithelial-to-mesenchymal transition via bFGF/PI3K/ESRP1 signaling in pulmonary fibrosis [J]. Biosci Rep, 2020, 40(1): BSR20190756. doi: 10.1042/BSR20190756.
[21] Fan Z, Xu Z, Niu H, et al. Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction [J]. J Control Release, 2019, 311-312: 233-244. doi: 10.1016/j.jconrel.2019.09.005.
[22] Stamenov N, Kotov G, Iliev A, et al. Mast cells and basic fibroblast growth factor in physiological aging of rat heart and kidney [J]. Biotech Histochem, 2022, 97(7): 504-518.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 刘金波,刘凯文,向崇鑫,程雷. 西红花苷对椎间盘退变的保护作用[J]. 山东大学学报 (医学版), 2023, 61(9): 84-93.
[3] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[4] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[5] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[6] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[7] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[8] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[9] 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47.
[10] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[11] 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 77-81.
[12] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
[13] 史丽,马静,赵喜娃,关英霞,赵连梅,单保恩. miR-25-3p在40例子宫内膜腺癌组织中的表达及对KLE细胞生物学功能的影响[J]. 山东大学学报 (医学版), 2020, 58(12): 86-91.
[14] 毕涛,卢倩倩,孙传东. 腺病毒介导HBx对人淋巴细胞影响的体外实验[J]. 山东大学学报 (医学版), 2018, 56(7): 15-20.
[15] 赵珊,闫莉. 慢性肾功能衰竭合并异常子宫出血患者子宫内膜消融术后继发子宫内膜癌1例[J]. 山东大学学报 (医学版), 2018, 56(5): 91-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .