您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 10-18.doi: 10.6040/j.issn.1671-7554.0.2022.1289

• 基础医学 • 上一篇    下一篇

幽门螺杆菌感染对胃癌细胞m6A水平的影响及其机制

孙菁果1,朱文帅1,鲁艺2,马晓丽1,郏雁飞1   

  1. 1.山东大学 济南市中心医院基础医学研究中心, 山东 济南 250010;2.山东第一医科大学 济南市中心医院基础医学研究中心, 山东 济南 250010
  • 收稿日期:2022-11-11 发布日期:2023-10-10
  • 通讯作者: 郏雁飞. E-mail:jiayanfei_@126.com
  • 基金资助:
    国家自然科学基金(31970728)

Effects of Helicobacter pylori infection on m6A level in gastric cancer cells and its mechanism

SUN Jingguo1, ZHU Wenshuai1, LU Yi2, MA Xiaoli1, JIA Yanfei1   

  1. 1. Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250010, Shandong, China;
    2. Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medicine University, Jinan 250010, Shandong, China
  • Received:2022-11-11 Published:2023-10-10

摘要: 目的 探讨幽门螺杆菌感染对胃癌中m6A水平的影响及机制。 方法 将胃癌细胞株MGC-803分别与幽门螺杆菌标准菌株NCTC 11637、NCTC 26695、PM SS1在MOI=100的条件下共培养8 h,用dot-blot和ELISA方法检测细胞总体m6A水平。用qRT-PCR 和Western blotting检测METTL3和METTL14的表达。下载GEO 数据库中的原始数据,分析m6A 甲基化转移酶与临床病理参数之间的关系。运用GEPIA分析TCGA和GTEx数据库中m6A甲基化转移酶METTL14在胃癌和正常组织中的表达差异。 结果 幽门螺杆菌可导致胃癌细胞m6A水平上调;幽门螺杆菌感染诱导了胃癌细胞中 METTL14 表达; METTL14表达与胃癌组织LAUREN分型相关,且在肠型胃癌组织中表达更高;胃癌组织中METTL14的表达高于癌旁正常组织。 结论 幽门螺杆菌感染诱导胃癌细胞总体m6A水平上调,其机制与m6A 甲基化转移酶METTL14表达上调有关。

关键词: 幽门螺杆菌, 胃癌, 甲基转移酶样14, 甲基转移酶样3, m6A

Abstract: Objective To investigate the effects of Helicobacter pylori(HP)infection on the level of m6A in gastric cancer and the mechanism. Methods After gastric cancer cell line MGC-803 was co-cultured with HP strains NCTC 11637, NCTC 26695 and PM SS1 at MOI=100 for 8 hours, the m6A level was detected with dot-blot and ELISA. The expressions of METTL3 and METTL14 were detected with qRT-PCR and Western blotting, respectively. Relevant data were downloaded from the GEO database to analyze the relationship between m6A methyltransferase and clinicopathological parameters. The difference in the expression of METTL14 in gastric cancer and normal tissues from TCGA and GTEx databases was analyzed with GEPIA. Results HP upregulated the m6A level in gastric cancer cells. HP infection promoted METTL14 expression. METTL14 expression correlated with LAUREN typing and was higher in intestinal type gastric cancer. METTL14 expression was higher in gastric cancer tissues than in normal adjacent tissues. Conclusion HP infection increases the m6A level in gastric cancer cells, which may be caused by the upregulation of METTL14.

Key words: Helicobacter pylori, Gastric cancer, Methyltransferase-like protein 14, Methyltransferase-like protein 3, m6A

中图分类号: 

  • R735.2
[1] Smyth E, Nilssin M, Grabsch H, et al. Gastric cancer [J]. Lancet(London, England), 2020, 396(10251): 635-648.
[2] Wu Y, Li Y, Giovannucci E. Potential impact of time trend of lifestyle risk factors on burden of major gastrointestinal cancers in China [J]. Gastroenterology, 2021, 161(6): 1830-1841.
[3] Li X, Sun Z, Peng G, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer [J]. Theranostics, 2022, 12(2): 620-638.
[4] Stewart OA, Wu F, Chen Y. The role of gastric microbiota in gastric cancer [J]. Gut Microbes, 2020, 11(5): 1220-1230.
[5] Sandasivam S, Decaprio J. The DREAM complex: master coordinator of cell cycle-dependent gene expression [J]. Nat Rev Cancer, 2013, 13(8): 585-595.
[6] Muhammad J, Eladl M, Khoder G. Helicobacter pylori-induced DNA methylation as an epigenetic modulator of gastric cancer: recent outcomes and future direction [J]. Pathogens, 2019, 8(1):23. doi: 10.3390/pathogens8010023.
[7] Vahidi S, Mirzajani E, Norollahi S, et al. Performance of DNA Methylation on the molecular pathogenesis of helicobacter pylori in gastric cancer; targeted therapy approach [J]. J Pharmacopuncture, 2022, 25(2): 88-100.
[8] Ding S, Goldberg J, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis [J]. Future Oncology(London, England), 2010, 6(5): 851-862.
[9] Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer [J]. Biomed Pharmacother, 2019, 112: 108613. doi:10.1016/j.biopha.2019.108613.
[10] Yang Y, Hsu P, Chen Y, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism[J]. Cell Res, 2018, 28(6): 616-624.
[11] An Y, Duan H. The role of m6A RNA methylation in cancer metabolism [J]. Mol Cancer, 2022, 21(1): 14. doi: 10.1186/s12943-022-01500-4.
[12] He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer [J]. Mol Cancer, 2019, 18(1): 176. doi:10.1186/s12943-019-1109-9.
[13] XU Y, Huang C. Progress and application of epitranscriptomic m(6)A modification in gastric cancer [J]. RNA Biology, 2022, 19(1): 885-896.
[14] Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer [J]. Mol Cancer, 2019, 18(1): 142.
[15] Chen D, Cheung H, Lau H, et al. N(6)-methyladenosine RNA-binding protein YTHDF1 in gastrointestinal cancers: function, molecular mechanism and clinical implication [J]. Cancers, 2022, 14(14):3489. doi: 10.3390/cancers14143489.
[16] Fenolla F, Bouam A, Ballouchem M, et al. Evaluation of the panbio COVID-19 rapid antigen detection test device for the screening of patients with COVID-19 [J]. J Clin Microbiol, 2021, 59(2):3. doi: 10.1128/JCM.02589-20.
[17] Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST [J]. Mol Cancer, 2020, 19(1): 46.
[18] Wang M, Liu J, Zhao Y, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N(6)adenosine methylation promoting the growth and metastasis of pancreatic cancer [J]. Mol Cancer, 2020, 19(1): 130.
[19] Cullin N, Azevedo C, Straussman R, et al. Microbiome and cancer [J]. Cancer Cell, 2021, 39(10): 1317-1341.
[20] Morgan R, Saleh S, Farrag H, et al. Bacterial cyclomodulins: types and roles in carcinogenesis [J]. Crit Rev Microbiol, 2022, 48(1): 42-66.
[21] Kostyusheva A, Brezgin S, Glebe D, et al. Host-cell interactions in HBV infection and pathogenesis: the emerging role of m6A modification [J]. Emerg Microbes Infect, 2021, 10(1): 2264-2275.
[22] Dang W, Xie Y, Cao P, et al. N(6)-methyladenosine and viral infection[J]. Front Microbiol, 2019, 10:417. doi:10.3389/fmicb.2019.00417.
[23] Murata N, Hatakeyama M. Helicobacter pylori-induced DNA double-stranded break in the development of gastric cancer [J]. Cancer Sci, 2022, 113(6): 1909-1918.
[24] Wu S, Li XF, Wu YY, et al. N6 -methyladenosine and rheumatoid arthritis: a comprehensive review [J]. Front Immunol, 2021, 12: 731842. doi: 10.3389/fimmu.2021.731842.
[25] Zhou H, Yin K, Zhang Y, et al. The RNA m6A writer METTL14 in cancers: roles, structures, and applications [J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188609. doi:10.1016/j.bbcan.2021.188609.
[26] Deng LJ, Deng WQ, Fan SR, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond [J]. Mol Cancer, 2022, 21(1): 52.
[27] Peng F, XU J, Cui B, et al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells [J]. Cell Res, 2021, 31(3): 345-361.
[28] Zhang C, OU S, Zhou Y, et al. m(6)A methyltransferase METTL14-mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer[J]. Front Oncol, 2021, 11: 696371. doi:10.3389/fonc.2021.696371.
[29] Weng H, Huang H, WU H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification [J]. Cell Stem Cell, 2018, 22(2): 191-205.
[30] Yang Z, Yang S, Cui YH, et al. METTL14 facilitates global genome repair and suppresses skin tumorigenesis [J]. Proc National Acad Sci U S A, 2021, 118(35):e2025948118. doi:10.1073/pnas.2025948118.
[31] Nagase L, Murata N, Hatakeyama M. Potentiation of helicobacter pylori CagA protein virulence through homodimerization [J]. J Biol Chem, 2011, 286(38): 33622-33631.
[32] Müller A. Multistep activation of the helicobacter pylori effector CagA [J]. J Clin Invest, 2012, 122(4): 1192-1195.
[33] Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein [J]. Nat Rev Cancer, 2004, 4(9): 688-694.
[34] Yao P, Kartsonaki C, Butt J, et al. Helicobacter pylori multiplex serology and risk of non-cardia and cardia gastric cancer: a case-cohort study and meta-analysis [J]. Int J Epidemiol, 2023. doi:10.1093/ije/dyad007.
[35] Goldenring J. No H. pylori, no adenocarcinoma for patients with autoimmune gastritis [J]. Gut, 2023, 72(1): 1-2.
[36] Holokai L, Chakrabarti J, Broda T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to helicobacter pylori infection [J]. PLoS Pathog, 2019, 15(1): e1007468. doi: 10.1371/journal.ppat.1007468.
[37] Wang Q, Guo F, Jin Y, et al. Applications of human organoids in the personalized treatment for digestive diseases [J]. Signal Transduct Target Ther, 2022, 7(1): 336.
[38] LI K, Luo H, Huang L, et al. Microsatellite instability: a review of what the oncologist should know [J]. Cancer Cell Int, 2020, 20: 16. doi: 10.1186/s12935-019-1091-8.
[39] Lower S, Mcgurk M,Clsrk A, et al. Satellite DNA evolution: old ideas, new approaches [J]. Curr Opin Genet Dev, 2018, 49: 70-78. doi: 10.1016/j.gde.2018.03.003.
[40] Ye P, Shi Y, LI A. Association between hMLH1 promoter methylation and risk of gastric cancer: a meta-analysis [J]. Front Physiol, 2018, 9: 368. doi: 10.3389/fphys.2018.00368.
[41] Hashimoto T, Kurokawa Y, Takahashi T, et al. Predictive value of MLH1 and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer [J]. Gastric Cancer, 2019, 22(4): 785-792.
[42] 周高云, 林龙, 林进维, 等. MLH1表达对胃癌患者预后及术前新辅助化疗反应的预测价值[J]. 中国癌症防治杂志, 2022, 14(1): 65-69. ZHOU Gaoyun, LIN Long, LIN Jinwei, et al.Predictive value of MLH1 expression on prognosis and preoperative neoadjuvant chemotherapy response in patients with gastric cancer[J]. Chinese Journal of Oncology Prevention and Treatment, 2022, 14(1): 65-69.
[43] Deng S, Zhang J, Su J, et al. RNA m(6)A regulates transcription via DNA demethylation and chromatin accessibility [J]. Nat Genet, 2022, 54(9): 1427-1437.
[44] Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer [J]. Molecular Cancer, 2020, 19(1): 106.
[45] Gong PJ, Shao YC, Yang Y, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer [J]. Front Oncol, 2020,10:578963.doi:10.3389/fonc.2020.578963.
[46] Zhang X, Li D, Jia C, et al. METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer [J]. Cell Death Dis, 2021, 12(6): 617.
[47] Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis [J]. Mol Cancer, 2022, 21(1): 51.
[48] Liu X, Xiao M, Zhang L, et al. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway [J]. J Clin Lab Anal, 2021, 35(3): e23655. doi: 10.1002/jcla.23655.
[1] 闫丛丛,陈辰,谢倩,王亚楠,张鑫璐,张迎春,武斌. 双酚A暴露对KGN细胞m6A修饰水平的影响[J]. 山东大学学报 (医学版), 2023, 61(8): 17-23.
[2] 樊荣,李彬彬,马晓丽,汪运山,郏雁飞. 胃癌中DEC2、HIF-2α的表达及临床意义[J]. 山东大学学报 (医学版), 2023, 61(7): 12-18.
[3] 郭崇勇,赵朋,刘海盟,王强, 贾宗师,张建. 胸前丘疹为首发表现的胃癌1例[J]. 山东大学学报 (医学版), 2023, 61(4): 119-120.
[4] 穆彦熹,李金洲,陈康,梁红英,姚亚龙,汪文杰,陈晓. 443例胃癌根治术后发生肺部并发症的危险因素[J]. 山东大学学报 (医学版), 2023, 61(4): 37-41.
[5] 王赞,徐晓涵,张瑜,曲业敏,王明义,陈艾. 幽门螺杆菌感染对胃癌细胞糖酵解的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 16-24.
[6] 付佳,王路路,胡帅,陈哲平,刘东义,李青松,卢国栋,张贺,赵鑫,冯昌. 不同入路腰方肌阻滞对胃癌根治患者术后恢复的影响[J]. 山东大学学报 (医学版), 2022, 60(8): 50-57.
[7] 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34.
[8] 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25.
[9] 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49.
[10] 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47.
[11] 穆彦熹,汪文杰,陈康,姚亚龙,李金洲,魏浩旗,刘海鹏,黄泽平,陈晓. 探寻一家系短期3例胃癌的临床病理及其相关肿瘤特征[J]. 山东大学学报 (医学版), 2022, 60(11): 96-101.
[12] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[13] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[14] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47-52.
[15] 支梦伟,江志伟,戴新娟,王刚,程伟. 加速康复外科指导下胃癌患者围手术期心率变异度的临床观察[J]. 山东大学学报 (医学版), 2020, 58(11): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[3] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[4] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[5] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[8] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[9] 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 1(7): 96 -101 .
[10] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .