山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 16-24.doi: 10.6040/j.issn.1671-7554.0.2022.0965
王赞1,2,徐晓涵1,张瑜3,曲业敏2,王明义2,陈艾1,2
WANG Zan1,2, XU Xiaohan1, ZHANG Yu3, QU Yemin2, WANG Mingyi2, CHEN Ai1,2
摘要: 目的 探讨幽门螺杆菌(H. pylori)对胃癌细胞糖酵解的影响及分子机制。 方法 通过检测胃黏膜上皮细胞GES-1与6种胃癌细胞(MKN28、AGS、HGC27、MGC803、MKN45、NCI-N87)的葡萄糖消耗速率和乳酸产量,确定GES-1和两种胃癌细胞MKN28、AGS为后续研究对象。将GES-1、MKN28和AGS细胞分别与H. pylori(H. pylori-HVS、H. pylori-26695、H. pylori-△cagA)共培养,构建H. pylori急性和慢性感染的细胞模型,将未感染H. pylori的3种细胞设置为对照组。在所有细胞模型中检测葡萄糖消耗、乳酸生成和葡萄糖摄取,并且通过Western blotting检测糖酵解关键酶的蛋白表达水平。 结果 与正常胃黏膜上皮细胞GES-1比较,多种胃癌细胞(AGS、HGC27、MGC803、MKN45、NCI-N87)中葡萄糖消耗和乳酸生成上调,差异均有统计学意义(P均<0.001)。与未感染H. pylori的对照组细胞比较,H. pylori急性感染不影响GES-1和两种胃癌细胞MKN28、AGS的葡萄糖摄取和乳酸生成,差异均无统计学意义(P均>0.05);而H. pylori慢性感染导致GES-1和两种胃癌细胞MKN28、AGS的葡萄糖摄取和乳酸生成增加,差异均有统计学意义(P均<0.001)。Western blotting结果显示,在H. pylori慢性感染的胃癌细胞中,PKM2(丙酮酸激酶M2亚型)表达水平上调,而PKM1(丙酮酸激酶M1亚型)表达水平下调。 结论 H. pylori慢性感染可上调胃癌细胞的糖酵解,其分子机制可能与PKM2有关,提示PKM2可能是H. pylori介导胃癌代谢改变的靶点。
中图分类号:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Crowe SE. Helicobacter pylori Infection [J]. N Engl J Med, 2019, 380(12): 1158-1165. [3] Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance—from biology to clinical implications [J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 613-629. [4] Keilberg D, Steele N, Fan S, et al. Gastric metabolomics detects helicobacter pylori correlated loss of numerous metabolites in both the corpus and antrum [J]. Infect Immun, 2021, 89(2): e00690-20. doi: 10.1128/IAI.00690-20. [5] Matsunaga S, Nishiumi S, Tagawa R, et al. Alterations in metabolic pathways in gastric epithelial cells infected with Helicobacter pylori [J]. Microb Pathog, 2018, 124: 122-129. E00690-20. doi: 10.1016/j.micpath.2018.08.033. [6] Maeda T, Zai H, Fukui Y, et al. Impact of Helicobacter pylori infection on fluid duodenal microbial community structure and microbial metabolic pathways [J]. BMC Microbiol, 2022, 22(1): 27. doi: 10.1186/s12866-022-02437-w. [7] Reinfeld BI, Rathmell WK, Kim TK, et al. The therapeutic implications of immunosuppressive tumor aerobic glycolysis [J]. Cell Mol Immunol, 2022, 19(1): 46-58. [8] Bar-Even A, Flamholz A, Noor E, et al. Rethinking glycolysis: on the biochemical logic of metabolic pathways [J]. Nat Chem Biol, 2012, 8(6): 509-517. [9] Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and therapeutic targets[J]. Cells, 2020, 9(10): 2308. doi: 10.3390/cells9102308. [10] Kao YS, Chen CW, Wei JC. Helicobacter pylori infection and risk of gastric cancer [J]. Lancet Public Health, 2022, 7(4): e302. doi: 10.1016/S2468-2667(22)00041-X. [11] Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects [J]. Mol Cancer, 2013, 12: 152. doi: 10.1186/1476-4598-12-152. [12] Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? [J]. Nat Rev Cancer, 2016, 16(10): 635-649. [13] Terebiznik MR, Vazquez CL, Torbicki K, et al. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells [J]. Infect Immun, 2006, 74(12): 6599-6614. [14] Wang C, Jiang J, Ji J, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer [J]. Sci Rep, 2017, 7(1): 2886. doi: 10.1038/s41598-017-03031-1. [15] Dai T, Zhang X, Zhou X, et al. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer [J]. Clin Transl Med, 2022, 12(10): e1088. doi: 10.1002/ctm2.1088. [16] Wu J, Hu L, Chen M, et al. Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: evidence from 16 cohort studies [J]. Onco Targets Ther, 2016, 9: 4277-4288. doi: 10.2147/OTT.S106508. [17] Gui DY, Lewis CA, Vander Heiden MG. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states [J]. Sci Signal, 2013, 6(263): pe7. doi:10.1126/scisignal.2003925. [18] Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells [J]. Int J Biochem Cell Biol, 2011, 43(7): 969-980. [19] Zhu S, Guo Y, Zhang X, et al. Pyruvate kinase M2(PKM2)in cancer and cancer therapeutics [J]. Cancer Lett, 2021, 503: 240-248. doi: 10.1016/j.canlet.2020.11.018. [20] Lee YB, Min JK, Kim JG, et al. Multiple functions of pyruvate kinase M2 in various cell types [J]. J Cell Physiol, 2022, 237(1): 128-148. [21] Alquraishi M, Puckett DL, Alani DS, et al. Pyruvate kinase M2: a simple molecule with complex functions [J]. Free Radic Biol Med, 2019, 143: 176-192. doi: 10.1016/j.freeradbiomed.2019.08.007. [22] Dong G, Mao Q, Xia W, et al. PKM2 and cancer: the function of PKM2 beyond glycolysis [J]. Oncol Lett, 2016, 11(3): 1980-1986. [23] Ryu H, Walker JK, Kim S, et al. Regulation of M2-type pyruvate kinase mediated by the high-affinity IgE receptors is required for mast cell degranulation [J]. Br J Pharmacol, 2008, 154(5): 1035-1046. [24] Zhang Z, Liu Q, Che Y, et al. Antigen presentation by dendritic cells in tumors is disrupted by altered metabolism that involves pyruvate kinase M2 and its interaction with SOCS3 [J]. Cancer Res, 2010, 70(1): 89-98. [25] Shimada N, Shinagawa T, Ishii S. Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein [J]. Genes Cells, 2008, 13(3): 245-254. [26] Duan HF, Hu XW, Chen JL, et al. Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8 [J]. J Natl Cancer Inst, 2007, 99(20): 1551-1555. [27] Wu X, Zhou Y, Zhang K, et al. Isoform-specific interaction of pyruvate kinase with hepatitis C virus NS5B [J]. FEBS Lett, 2008, 582(15): 2155-2160. [28] Mazurek S, Zwerschke W, Jansen-Durr P, et al. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex [J]. Biochem J, 2001, 356(Pt 1): 247-256. [29] Gupta V, Bamezai RN. Human pyruvate kinase M2: a multifunctional protein[J]. Protein Sci, 2010, 19(11): 2031-2044. [30] 孟雨,李燕京,白玉贤. M2型丙酮酸激酶非代谢功能在肿瘤治疗中的研究进展[J]. 现代肿瘤医学, 2022, 30(17): 3230-3234. MENG Yu, LI Yanjing, BAI Yuxian. Research progress of non-metabolic function of M2 pyruvate kinase in cancer treatment [J]. Journal of Modern Oncology, 2022, 30(17): 3230-3234. [31] Shiroki T, Yokoyama M, Tanuma N, et al. Enhanced expression of the M2 isoform of pyruvate kinase is involved in gastric cancer development by regulating cancer-specific metabolism [J]. Cancer Sci, 2017, 108(5): 931-940. [32] Dong T, Yan Y, Chai H, et al. Pyruvate kinase M2 affects liver cancer cell behavior through up-regulation of HIF-1α and Bcl-xL in culture [J]. Biomed Pharmacother, 2015, 69: 277-284. [33] Dai T, Zhang X, Zhou X, et al. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer [J]. Clin Transl Med, 2022, 12(10): e1088. doi: 10.1002/ctm2.1088. |
[1] | 黄珊,娄能俊,韩晓琳,梁中昊,华梦羽,庄向华,陈诗鸿. 高糖环境下Lipin1对神经元代谢组学的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 1-8. |
[2] | 付佳,王路路,胡帅,陈哲平,刘东义,李青松,卢国栋,张贺,赵鑫,冯昌. 不同入路腰方肌阻滞对胃癌根治患者术后恢复的影响[J]. 山东大学学报 (医学版), 2022, 60(8): 50-57. |
[3] | 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25. |
[4] | 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34. |
[5] | 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49. |
[6] | 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12. |
[7] | 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47. |
[8] | 赵美茹,朱迪,刘淋,管庆波,张栩. 简易胰岛素抵抗指标与698例2型糖尿病患者发生高尿酸血症风险的关联[J]. 山东大学学报 (医学版), 2022, 60(12): 44-51. |
[9] | 穆彦熹,汪文杰,陈康,姚亚龙,李金洲,魏浩旗,刘海鹏,黄泽平,陈晓. 探寻一家系短期3例胃癌的临床病理及其相关肿瘤特征[J]. 山东大学学报 (医学版), 2022, 60(11): 96-101. |
[10] | 仲明惟,胡三元. 我国腹腔镜技术治疗肥胖症手术方式的探索[J]. 山东大学学报 (医学版), 2021, 59(9): 72-77. |
[11] | 曹义海. 血管生成在疾病治疗中的应用与展望[J]. 山东大学学报 (医学版), 2021, 59(9): 9-14. |
[12] | 陈子江, 颜军昊. 子宫内膜容受性影响因素的研究进展[J]. 山东大学学报 (医学版), 2021, 59(8): 1-7. |
[13] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[14] | 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39. |
[15] | 付依林,郭田,宫颖,姚振宇,管庆波,徐潮,周新丽,张海清,郑冬梅,刘鲁娜,赵家军. 554例内分泌科住院患者低钾血症的病因和临床特点的回顾性分析:来自单中心的研究[J]. 山东大学学报 (医学版), 2021, 59(10): 41-48. |
|