您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (2): 16-24.doi: 10.6040/j.issn.1671-7554.0.2022.0965

• 基础医学 • 上一篇    下一篇

幽门螺杆菌感染对胃癌细胞糖酵解的影响

王赞1,2,徐晓涵1,张瑜3,曲业敏2,王明义2,陈艾1,2   

  1. 1.潍坊医学院医学检验学院, 山东 潍坊 261053;2.威海市立医院中心实验室, 山东 威海 264200;3.大连医科大学检验医学院, 辽宁 大连 116000
  • 发布日期:2023-02-17
  • 通讯作者: 陈艾. E-mail:chenai2378@163.com
  • 基金资助:
    山东省自然科学基金(ZR2021QH236);山东省医药卫生科技发展计划(2018WS106)

Effects of Helicobacter pylori infection on glycolysis of gastric cancer cells

WANG Zan1,2, XU Xiaohan1, ZHANG Yu3, QU Yemin2, WANG Mingyi2, CHEN Ai1,2   

  1. 1. School of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong, China;
    2. Department of Central Lab, Weihai Municipal Hospital, Weihai 264200, Shandong, China;
    3. School of Laboratory Medicine, Dalian Medical University, Dalian 116000, Liaoning, China
  • Published:2023-02-17

摘要: 目的 探讨幽门螺杆菌(H. pylori)对胃癌细胞糖酵解的影响及分子机制。 方法 通过检测胃黏膜上皮细胞GES-1与6种胃癌细胞(MKN28、AGS、HGC27、MGC803、MKN45、NCI-N87)的葡萄糖消耗速率和乳酸产量,确定GES-1和两种胃癌细胞MKN28、AGS为后续研究对象。将GES-1、MKN28和AGS细胞分别与H. pylori(H. pylori-HVS、H. pylori-26695、H. pylori-△cagA)共培养,构建H. pylori急性和慢性感染的细胞模型,将未感染H. pylori的3种细胞设置为对照组。在所有细胞模型中检测葡萄糖消耗、乳酸生成和葡萄糖摄取,并且通过Western blotting检测糖酵解关键酶的蛋白表达水平。 结果 与正常胃黏膜上皮细胞GES-1比较,多种胃癌细胞(AGS、HGC27、MGC803、MKN45、NCI-N87)中葡萄糖消耗和乳酸生成上调,差异均有统计学意义(P均<0.001)。与未感染H. pylori的对照组细胞比较,H. pylori急性感染不影响GES-1和两种胃癌细胞MKN28、AGS的葡萄糖摄取和乳酸生成,差异均无统计学意义(P均>0.05);而H. pylori慢性感染导致GES-1和两种胃癌细胞MKN28、AGS的葡萄糖摄取和乳酸生成增加,差异均有统计学意义(P均<0.001)。Western blotting结果显示,在H. pylori慢性感染的胃癌细胞中,PKM2(丙酮酸激酶M2亚型)表达水平上调,而PKM1(丙酮酸激酶M1亚型)表达水平下调。 结论 H. pylori慢性感染可上调胃癌细胞的糖酵解,其分子机制可能与PKM2有关,提示PKM2可能是H. pylori介导胃癌代谢改变的靶点。

关键词: 幽门螺杆菌, 丙酮酸激酶, 胃癌, 代谢, 糖酵解

Abstract: Objective To explore the effects of Helicobacter pylori(H. pylori)on glycolysis metabolism of gastric cancer cells and the molecular mechanism. Methods After the glucose consumption rate and lactate production of gastric mucosal epithelial cells GES-1 and gastric cancer cells including MKN28, AGS, HGC27, MGC803, MKN45 and NCI-N87 were detected, GES-1, MKN28 and AGS were identified as the follow-up research objects. Untreated GES-1, MKN28 and AGS were set as controls, while they were co-cultured with H. pylori(H. pylori-HVS, H. pylori-26695, H. pylori-△cagA)to establish acute and chronic cell models. Glucose consumption, lactate production and glucose uptake were measured in all cell models. The protein levels of key enzymes in glucose metabolism were detected with Western blotting. Results Compared with normal gastric mucosal GES-1 cells, the gastric cancer cells(AGS, HGC27, MGC803, MKN45, NCI-N87)had significantly up-regulated glycolysis(P<0.001). Compared with the controls, the acute models had unchanged glucose uptake and lactate production(P>0.05), while chronic models had significantly increased glucose uptake and lactate production(P<0.001). The expression level of M2 isoform of pyruvate kinase(PKM2)was significantly up-regulated in the acute models, while that of M1 isoform of pyruvate kinase(PKM1)was down-regulated. Conclusion Chronic H. pylori infection can up-regulate glycolysis in gastric cancer cells, and the molecular mechanism may be related to PKM2, suggesting that PKM2 may be the target of H. pylori-mediated metabolic changes in gastric cancer.

Key words: Helicobacter pylori, Pyruvate kinase, Gastric cancer, Metabolism, Glycolysis

中图分类号: 

  • R735.2
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Crowe SE. Helicobacter pylori Infection [J]. N Engl J Med, 2019, 380(12): 1158-1165.
[3] Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance—from biology to clinical implications [J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 613-629.
[4] Keilberg D, Steele N, Fan S, et al. Gastric metabolomics detects helicobacter pylori correlated loss of numerous metabolites in both the corpus and antrum [J]. Infect Immun, 2021, 89(2): e00690-20. doi: 10.1128/IAI.00690-20.
[5] Matsunaga S, Nishiumi S, Tagawa R, et al. Alterations in metabolic pathways in gastric epithelial cells infected with Helicobacter pylori [J]. Microb Pathog, 2018, 124: 122-129. E00690-20. doi: 10.1016/j.micpath.2018.08.033.
[6] Maeda T, Zai H, Fukui Y, et al. Impact of Helicobacter pylori infection on fluid duodenal microbial community structure and microbial metabolic pathways [J]. BMC Microbiol, 2022, 22(1): 27. doi: 10.1186/s12866-022-02437-w.
[7] Reinfeld BI, Rathmell WK, Kim TK, et al. The therapeutic implications of immunosuppressive tumor aerobic glycolysis [J]. Cell Mol Immunol, 2022, 19(1): 46-58.
[8] Bar-Even A, Flamholz A, Noor E, et al. Rethinking glycolysis: on the biochemical logic of metabolic pathways [J]. Nat Chem Biol, 2012, 8(6): 509-517.
[9] Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and therapeutic targets[J]. Cells, 2020, 9(10): 2308. doi: 10.3390/cells9102308.
[10] Kao YS, Chen CW, Wei JC. Helicobacter pylori infection and risk of gastric cancer [J]. Lancet Public Health, 2022, 7(4): e302. doi: 10.1016/S2468-2667(22)00041-X.
[11] Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects [J]. Mol Cancer, 2013, 12: 152. doi: 10.1186/1476-4598-12-152.
[12] Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? [J]. Nat Rev Cancer, 2016, 16(10): 635-649.
[13] Terebiznik MR, Vazquez CL, Torbicki K, et al. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells [J]. Infect Immun, 2006, 74(12): 6599-6614.
[14] Wang C, Jiang J, Ji J, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer [J]. Sci Rep, 2017, 7(1): 2886. doi: 10.1038/s41598-017-03031-1.
[15] Dai T, Zhang X, Zhou X, et al. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer [J]. Clin Transl Med, 2022, 12(10): e1088. doi: 10.1002/ctm2.1088.
[16] Wu J, Hu L, Chen M, et al. Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: evidence from 16 cohort studies [J]. Onco Targets Ther, 2016, 9: 4277-4288. doi: 10.2147/OTT.S106508.
[17] Gui DY, Lewis CA, Vander Heiden MG. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states [J]. Sci Signal, 2013, 6(263): pe7. doi:10.1126/scisignal.2003925.
[18] Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells [J]. Int J Biochem Cell Biol, 2011, 43(7): 969-980.
[19] Zhu S, Guo Y, Zhang X, et al. Pyruvate kinase M2(PKM2)in cancer and cancer therapeutics [J]. Cancer Lett, 2021, 503: 240-248. doi: 10.1016/j.canlet.2020.11.018.
[20] Lee YB, Min JK, Kim JG, et al. Multiple functions of pyruvate kinase M2 in various cell types [J]. J Cell Physiol, 2022, 237(1): 128-148.
[21] Alquraishi M, Puckett DL, Alani DS, et al. Pyruvate kinase M2: a simple molecule with complex functions [J]. Free Radic Biol Med, 2019, 143: 176-192. doi: 10.1016/j.freeradbiomed.2019.08.007.
[22] Dong G, Mao Q, Xia W, et al. PKM2 and cancer: the function of PKM2 beyond glycolysis [J]. Oncol Lett, 2016, 11(3): 1980-1986.
[23] Ryu H, Walker JK, Kim S, et al. Regulation of M2-type pyruvate kinase mediated by the high-affinity IgE receptors is required for mast cell degranulation [J]. Br J Pharmacol, 2008, 154(5): 1035-1046.
[24] Zhang Z, Liu Q, Che Y, et al. Antigen presentation by dendritic cells in tumors is disrupted by altered metabolism that involves pyruvate kinase M2 and its interaction with SOCS3 [J]. Cancer Res, 2010, 70(1): 89-98.
[25] Shimada N, Shinagawa T, Ishii S. Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein [J]. Genes Cells, 2008, 13(3): 245-254.
[26] Duan HF, Hu XW, Chen JL, et al. Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8 [J]. J Natl Cancer Inst, 2007, 99(20): 1551-1555.
[27] Wu X, Zhou Y, Zhang K, et al. Isoform-specific interaction of pyruvate kinase with hepatitis C virus NS5B [J]. FEBS Lett, 2008, 582(15): 2155-2160.
[28] Mazurek S, Zwerschke W, Jansen-Durr P, et al. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex [J]. Biochem J, 2001, 356(Pt 1): 247-256.
[29] Gupta V, Bamezai RN. Human pyruvate kinase M2: a multifunctional protein[J]. Protein Sci, 2010, 19(11): 2031-2044.
[30] 孟雨,李燕京,白玉贤. M2型丙酮酸激酶非代谢功能在肿瘤治疗中的研究进展[J]. 现代肿瘤医学, 2022, 30(17): 3230-3234. MENG Yu, LI Yanjing, BAI Yuxian. Research progress of non-metabolic function of M2 pyruvate kinase in cancer treatment [J]. Journal of Modern Oncology, 2022, 30(17): 3230-3234.
[31] Shiroki T, Yokoyama M, Tanuma N, et al. Enhanced expression of the M2 isoform of pyruvate kinase is involved in gastric cancer development by regulating cancer-specific metabolism [J]. Cancer Sci, 2017, 108(5): 931-940.
[32] Dong T, Yan Y, Chai H, et al. Pyruvate kinase M2 affects liver cancer cell behavior through up-regulation of HIF-1α and Bcl-xL in culture [J]. Biomed Pharmacother, 2015, 69: 277-284.
[33] Dai T, Zhang X, Zhou X, et al. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer [J]. Clin Transl Med, 2022, 12(10): e1088. doi: 10.1002/ctm2.1088.
[1] 黄珊,娄能俊,韩晓琳,梁中昊,华梦羽,庄向华,陈诗鸿. 高糖环境下Lipin1对神经元代谢组学的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 1-8.
[2] 付佳,王路路,胡帅,陈哲平,刘东义,李青松,卢国栋,张贺,赵鑫,冯昌. 不同入路腰方肌阻滞对胃癌根治患者术后恢复的影响[J]. 山东大学学报 (医学版), 2022, 60(8): 50-57.
[3] 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25.
[4] 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34.
[5] 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49.
[6] 苑宝文,王沛,黄蔚. 组蛋白去乙酰化酶SIRT1对胰腺癌代谢的调控作用[J]. 山东大学学报 (医学版), 2022, 60(3): 1-12.
[7] 吕岩红,张志勉. 2 809名体检人群中高血压与幽门螺杆菌感染的关联性[J]. 山东大学学报 (医学版), 2022, 60(2): 43-47.
[8] 赵美茹,朱迪,刘淋,管庆波,张栩. 简易胰岛素抵抗指标与698例2型糖尿病患者发生高尿酸血症风险的关联[J]. 山东大学学报 (医学版), 2022, 60(12): 44-51.
[9] 穆彦熹,汪文杰,陈康,姚亚龙,李金洲,魏浩旗,刘海鹏,黄泽平,陈晓. 探寻一家系短期3例胃癌的临床病理及其相关肿瘤特征[J]. 山东大学学报 (医学版), 2022, 60(11): 96-101.
[10] 仲明惟,胡三元. 我国腹腔镜技术治疗肥胖症手术方式的探索[J]. 山东大学学报 (医学版), 2021, 59(9): 72-77.
[11] 曹义海. 血管生成在疾病治疗中的应用与展望[J]. 山东大学学报 (医学版), 2021, 59(9): 9-14.
[12] 陈子江, 颜军昊. 子宫内膜容受性影响因素的研究进展[J]. 山东大学学报 (医学版), 2021, 59(8): 1-7.
[13] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[14] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[15] 付依林,郭田,宫颖,姚振宇,管庆波,徐潮,周新丽,张海清,郑冬梅,刘鲁娜,赵家军. 554例内分泌科住院患者低钾血症的病因和临床特点的回顾性分析:来自单中心的研究[J]. 山东大学学报 (医学版), 2021, 59(10): 41-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!