山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 19-28.doi: 10.6040/j.issn.1671-7554.0.2023.0243
董雅琪1,2,王新慧1,2,赵颖慧1,2,3,王传新1,2
DONG Yaqi1,2, WANG Xinhui1,2, ZHAO Yinghui1,2,3, WANG Chuanxin1,2
摘要: 目的 探究长链非编码RNA(lncRNA)LINC02163与结直肠癌远处转移的相关性及其生物学功能,并评估血清外泌体LINC02163作为远处转移标志物的潜能。 方法 分析结直肠癌组织转录组数据挖掘差异lncRNAs;结合患者临床病理和人口统计学参数分析LINC02163在结直肠癌患者中的表达特征;通过结直肠癌组织芯片原位杂交(ISH)实验探究LINC02163与患者预后的相关性;构建裸鼠肿瘤转移模型探究LINC02163对SW620细胞体内远处转移的影响;通过透射电镜、纳米颗粒跟踪分析以及Western blotting鉴定结直肠癌患者血清外泌体;通过核糖核酸酶A(RNase A)孵育实验分析血清外泌体LINC02163的稳定性;绘制受试者工作特征(ROC)曲线评估血清外泌体LINC02163识别远处转移结直肠癌的效能。 结果 通过5个结直肠癌组织转录组数据筛选出在结直肠癌中高表达的LINC02163;TCGA数据分析表明LINC02163的表达与结直肠癌远处转移相关(P<0.05);ISH实验表明LINC02163高表达与患者预后不良相关(P<0.05);裸鼠肿瘤转移模型显示LINC02163敲低抑制SW620细胞体内的远处转移(P=0.05);外泌体表征实验表明成功提取患者血清外泌体;RNase A孵育实验表明血清外泌体LINC02163具有较高的稳定性;ROC分析显示血清外泌体LINC02163识别远处转移结直肠癌的曲线下面积为0.864。 结论 LINC02163在结直肠癌中高表达且与远处转移相关,血清外泌体LINC02163具有成为远处转移标志物的潜能。
中图分类号:
| [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review [J]. JAMA, 2021, 325(7): 669-685. [3] Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors [J]. Prz Gastroenterol, 2019, 14(2): 89-103. [4] Li N, Lu B, Luo C, et al. Incidence, mortality, survival, risk factor and screening of colorectal cancer: a comparison among China, Europe, and northern America [J]. Cancer Lett, 2021, 522: 255-268. doi: 10.1016/j.canlet.2021.09.034. [5] Liang ZX, Liu HS, Wang FW, et al. Correction: lncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization [J]. Cell Death Dis, 2020, 11(6): 465. [6] Matboli M, Labib ME, Nasser HE, et al. Exosomal miR-1298 and lncRNA-RP11-583F2.2 expression in hepato-cellular carcinoma [J]. Curr Genomics, 2020, 21(1): 46-55. [7] Zhang Y, Liu H, Liu X, et al. Identification of an exosomal long non-coding RNAs panel for predicting recurrence risk in patients with colorectal cancer [J]. Aging(Albany NY), 2020, 12(7): 6067-6088. [8] Guo Q, Tang W, Inagaki Y, et al. Subcellular localization of KL-6 mucin in colorectal carcinoma cell lines: association with metastatic potential and cell morphology [J]. Oncol Rep, 2007, 17(5): 1057-1060. [9] Wen L, Shi X, He L, et al. Manganese-enhanced MRI for the detection of metastatic potential in colorectal cancer [J]. Eur Radiol Exp, 2017, 1(1): 21. [10] Depciuch J, Klbowski B, Stec M, et al. Similarities in the general chemical composition of colon cancer cells and their microvesicles investigated by spectroscopic methods-potential clinical relevance [J]. Int J Mol Sci, 2020, 21(5): 1826. [11] 练磊, 兰平. 国家卫健委中国结直肠癌诊疗规范解读(2020版)— 外科部分 [J]. 临床外科杂志, 2021, 29(1): 10-12. LIAN Lei, LAN Ping. National health commission of China colorectal cancer diagnosis and treatment standard interpretation(2020 edition)-surgical part [J]. Journal of Clinical Surgery, 2021, 29(1): 10-12. [12] Dzunic M, Andjelkovic-Apostolovic M, Vrbic S, et al. Survival of patients with liver metastases from colorectal cancer treated with bevacizumab and FOLFOX4 [J]. J BUON, 2020, 25(1): 212-219. [13] Ma ZH, Wang YP, Zheng WH, et al. Prognostic factors and therapeutic effects of different treatment modalities for colorectal cancer liver metastases [J]. World J Gastrointest Oncol, 2020, 12(10): 1177-1194. [14] Kijima S, Sasaki T, Nagata K, et al. Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT [J]. World J Gastroenterol, 2014, 20(45): 16964-16975. [15] Hosseini K, Ranjbar M, Pirpour Tazehkand A, et al. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing [J]. J Transl Med, 2022, 20(1): 30. doi: 10.1186/s12967-022-03231-y. [16] Shen M, Di K, He H, et al. Progress in exosome associated tumor markers and their detection methods [J]. Mol Biomed, 2020, 1(1): 3. doi: 10.1186/s43556-020-00002-3. [17] Nie H, Liao Z, Wang Y, et al. Exosomal long non-coding RNAs: emerging players in cancer metastasis and potential diagnostic biomarkers for personalized oncology [J]. Genes Dis, 2021, 8(6): 769-780. [18] Zhang W, Wang Q, Yang Y, et al. The role of exosomal lncRNAs in cancer biology and clinical management [J]. Exp Mol Med, 2021, 53(11): 1669-1673. [19] Thakur A, Parra DC, Motallebnejad P, et al. Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics [J]. Bioact Mater, 2022, 10: 281-294. doi: 10.1016/j.bioactmat.2021.08.029. [20] Zheng HT, Shi DB, Wang YW, et al. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer [J]. Int J Clin Exp Pathol, 2014, 7(6): 3174-3181. [21] Chen C, Luo Y, He W, et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer [J]. J Clin Invest, 2020, 130(1): 404-421. [22] Gao T, Liu X, He B, et al. Exosomal lncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression [J]. Cancer Cell Int, 2018, 18: 11. doi: 10.1186/s12935-018-0506-2. [23] Lee YR, Kim G, Tak WY, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma [J]. Int J Cancer, 2019, 144(6): 1444-1452. [24] Brennan K, Martin K, Fitzgerald SP, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum [J]. Sci Rep, 2020, 10(1): 1039. [25] Ma J, Zhang L, Shang A, et al. LINC02163 promotes colorectal cancer progression via miR-511-3p/AKT3 axis [J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 961-968. [26] Tian Y, Zhou J, Zou Y, et al. Upregulated long noncoding RNAs LINC02163 and FEZF1-AS1 exert oncogenic roles in colorectal cancer [J]. Anticancer Drugs, 2021, 32(1): 66-73. |
| [1] | 陈映均,刘同刚. 综合生物信息学分析鉴定乙型肝炎病毒相关肝细胞癌中异常甲基化修饰的差异表达基因[J]. 山东大学学报 (医学版), 2023, 61(9): 101-117. |
| [2] | 赵元元,路军涛,吴小华. 人脐带间充质干细胞外泌体miR-100对多囊卵巢综合征患者颗粒细胞炎症的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 51-58. |
| [3] | 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34. |
| [4] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
| [5] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
| [6] | 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109. |
| [7] | 李雁儒,李娟,李培龙,杜鲁涛,王传新. 胰腺癌不同进展期血清外泌体蛋白质组学分析[J]. 山东大学学报 (医学版), 2022, 60(10): 33-41. |
| [8] | 冯鑫鑫,韩波,张丽,马孟洁,陈思宇. 长链非编码RNA NONHSAT247814.1在18例儿童心肌炎中的表达及体外细胞实验观察[J]. 山东大学学报 (医学版), 2022, 60(10): 27-32. |
| [9] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
| [10] | 孙富云,王维鹏,张会会,耿艳,安小霞,李双双,张彬彬. 结直肠癌术后患者人格特质与抑郁、焦虑症状的关联性[J]. 山东大学学报 (医学版), 2021, 59(7): 91-96. |
| [11] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
| [12] | 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 59-69. |
| [13] | 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38-46. |
| [14] | 杨雪梅,李娟,王一凡,李培龙,王允山,杜鲁涛,王传新. 3-lncRNAs预后模型在HER2阳性乳腺癌预后评价中的意义[J]. 山东大学学报 (医学版), 2020, 58(5): 69-76. |
| [15] | 康成为,刘雷,蒲小兵,谭钢,董长超,晏兆魁. 合并亚临床型甲状腺功能减退的骨质疏松症62例患者骨代谢及骨转换标志物水平分析[J]. 山东大学学报 (医学版), 2020, 58(5): 82-86. |
|