Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (10): 117-124.doi: 10.6040/j.issn.1671-7554.0.2025.0094
• Review • Previous Articles
WU Qiqi, CHENG Miaomiao, XIAO Xiaoyan
CLC Number:
| [1] Ge XY, Lan ZK, Lan QQ, et al. Diagnostic accuracy of ultrasound-based multimodal radiomics modeling for fibrosis detection in chronic kidney disease[J]. Eur Radiol, 2023, 33(4): 2386-2398. [2] Franke M, Kramarczyk A, Taylan C, et al. Ultrasound-guided percutaneous renal biopsy in 295 children and adolescents: role of ultrasound and analysis of complications[J]. PloS One, 2014, 9(12): e114737. doi:10.1371/journal.pone.0114737 [3] Halimi JM, Gatault P, Longuet H, et al. Major bleeding and risk of death after percutaneous native kidney biopsies: a French nationwide cohort study[J]. Clin J Am Soc Nephrol, 2020, 15(11): 1587-1594. [4] Occhipinti A, Verma S, Doan LMT, et al. Mechanism-aware and multimodal AI: beyond model-agnostic interpretation[J]. Trends Cell Biol, 2024, 34(2): 85-89. [5] 岳潭. 基于多模态学习的图文信息融合方法的研究及应用[D]. 北京:北京邮电大学,2024. [6] 陈晋音, 席昌坤, 郑海斌, 等. 多模态大语言模型的安全性研究综述[J]. 计算机科学, 2025, 52(7): 315-341. [7] Uhm KH, Jung SW, Hong SH, et al. Lesion-aware cross-phase attention network for renal tumor subtype classification on multi-phase CT scans[J]. Comput Biol Med, 2024, 178: 108746.doi:10.1016/j.compbiomed.2024.108746 [8] Forbes AN, Xu D, Cohen S, et al. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data[J]. Cell Syst, 2024, 15(9): 824-837. [9] Cheng L, Huang Q, Zhu Z, et al. MoAGL-SA: a multi-omics adaptive integration method with graph learning and self attention for cancer subtype classification[J]. BMC Bioinformatics, 2024, 25(1): 364. doi:10.1186/s12859-024-05989-y [10] Tian H, He X, Yang K, et al. DAPNet: multi-view graph contrastive network incorporating disease clinical and molecular associations for disease progression prediction[J]. BMC Med Inform Decis Mak, 2024, 24(1): 345. doi: 10.1186/s12911-024-02756-0 [11] Liu R, Wang Q, Zhang X. Identification of prognostic coagulation-related signatures in clear cell renal cell carcinoma through integrated multi-omics analysis and machine learning[J]. Comput Biol Med, 2024, 168: 107779. doi: 10.1016/j.compbiomed.2023.107779 [12] Pan KH, Yao F, Hong WF, et al. Multimodal radiomics based on 18F-Prostate-specific membrane antigen-1007 PET/CT and multiparametric MRI for prostate cancer extracapsular extension prediction[J].Br J Radiol, 2024, 97(1154): 408-414. [13] Huang KB, Gui CP, Xu YZ, et al. A multi-classifier system integrated by clinico-histology-genomic analysis for predicting recurrence of papillary renal cell carcinoma[J]. Nat Commun, 2024, 15(1): 6215.doi: 10.1038/s41467-024-50369-y [14] Wang Z, Xue Y, Liu Z, et al. AI fusion of multisource data identifies key features of vitiligo[J]. Sci Rep, 2024, 14(1): 24278. doi: 10.1038/s41598-024-75062-4 [15] Zhu L, Huang R, Zhou Z, et al. Prediction of renal function 1 year after transplantation using machine learning methods based on ultrasound radiomics combined with clinical and imaging features[J]. Ultrason Imaging, 2023, 45(2): 85-96. [16] Leube J, Horn M, Hartrampf PE, et al. PSMA-PET improves deep learning-based automated CT kidney segmentation[J]. Z Fur Med Phys, 2023, 34(2): 231-241. [17] Shehata M, Shalaby A, Switala AE, et al. A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results[J]. Med phys, 2020, 47(6): 2427-2440. [18] Wang X, Cai S, Wang H, et al. Deep-learning-based renal artery stenosis diagnosis via multimodal fusion[J]. J App Clin Med Phys, 2024, 25(3): e14298. doi: 10.1002/acm2.14298 [19] Jeon SK, Joo I, Park J, et al. Fully-automated multi-organ segmentation tool applicable to both non-contrast and post-contrast abdominal CT: deep learning algorithm developed using dual-energy CT images[J]. Sci Rep, 2024, 14(1): 4378. doi: 10.1038/s41598-024-55137-y [20] 唐玉宁, 潘天岳, 董智慧等. 深度学习在主动脉影像自动分割中的研究进展[J]. 山东大学学报(医学版), 2024, 62(9): 66-73. TANG Yuning, PAN Tianyue, DONG Zhihui, et al. Research progress of deep learning in automatic segmentation of aortic images[J]. Journal of Shandong University(Health Sciences), 2024, 62(9): 66-73. [21] Bifarin OO, Gaul DA, Sah S, et al. Machine learning-enabled renal cell carcinoma status prediction using multiplatform urine-based metabolomics[J]. J Proteom Res, 2021, 20(7): 3629-3641. [22] Chen Z, Wang Y, Ying MTC, et al. Interpretable machine learning model integrating clinical and elastosonographic features to detect renal fibrosis in Asian patients with chronic kidney disease[J]. J Nephrol, 2024, 37(4): 1027-1039. [23] Xiong H, Wei B, Huang Y, et al. A novel approach to the cause of death identification-multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning[J]. Talanta, 2025, 282: 127040. doi: 10.1016/j.talanta.2024.127040 [24] Handa K, Sasaki S, Asano S, et al. Prediction of inhibitory activity against the MATE1 transporter via combined fingerprint- and physics-based machine learning models[J]. J Chem Inf and Model, 2024, 64(18): 7068-7076. [25] Chen L, Ren Y, Yuan Y, et al. Multi-parametric MRI-based machine learning model for prediction of patholo-gical grade of renal injury in a rat kidney cold ischemia-reperfusion injury model[J]. BMC Med Imaging, 2024, 24: 188. doi: 10.1186/s12880-024-01320-6 [26] Ding JL, Xing ZY, Jiang ZX, et al. Evaluation of renal dysfunction using texture analysis based on DWI, BOLD, and susceptibility-weighted imaging[J]. Eur Radiol, 2019, 29(5): 2293-2301. [27] Oetjen J, Aichler M, Trede D, et al. MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation[J]. J Proteom, 2013, 90(2): 52-60. [28] Guo SZ, Chen HJ, Sheng XY, et al. Cross-modal transfer learning based on an improved CycleGAN model for accurate kidney segmentation in ultrasound images[J]. Ultrasound Med Biol, 2024, 50(11): 1638-1645. [29] Liu K, Yuan BR, Zhang XZ, et al. Characterizing the temporal changes in association between modifiable risk factors and acute kidney injury with multi-view analysis[J]. Int J Med Inform, 2022, 163: 104785. doi: 10.1016/j.ijmedinf.2022.104785 [30] Grams ME, Sang Y, Coresh J, et al. Acute kidney injury after major surgery: a retrospective analysis of veterans health administration data[J]. Am J Kidney Dis, 2016, 67(6): 872-880. [31] Hofer IS, Kupina M, Laddaran L, et al. Integration of feature vectors from raw laboratory, medication and procedure names improves the precision and recall of models to predict postoperative mortality and acute kidney injury[J]. Sci Rep, 2022, 12(1): 10254. doi: 10.1038/s41598-022-13879-7 [32] Weaver JK, Milford K, Rickard M, et al. Deep learning imaging features derived from kidney ultrasounds predict chronic kidney disease progression in children with posterior urethral valves[J]. Pediatr Nephrol, 2023, 38(3): 839-846. [33] 张炯. 功能磁共振对慢性肾脏病患者肾脏纤维化状态的评估及多模态模型的建立[D]. 上海: 中国人民解放军海军军医大学,2022. [34] Qin X, Liu X, Xia L, et al. Multimodal ultrasound deep learning to detect fibrosis in early chronic kidney disease[J]. Ren Fail, 2024, 46(2): 2417740. doi: 10.1080/0886022X.2024.2417740 [35] Lee SM, Kang M, Byeon K, et al. Machine learning-aided chronic kidney disease diagnosis based on ultrasound imaging integrated with computer-extracted measurable features[J]. J Digit Imag, 2022, 35(5): 1091-1100. [36] Si S, Liu H, Xu L, et al. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptome[J]. Genome Med, 2024, 16(1): 84.doi: 10.1186/s13073-024-01356-x [37] Qin X, Xia L, Ma Q, et al. Development of a novel combined nomogram model integrating deep learning radiomics to diagnose IgA nephropathy clinically[J]. Ren Fail, 2023, 45(2): 2271104. doi: 10.1080/0886022X.2023.2271104 [38] Chen T, Chen T, Xu W, et al. Development and external validation of a multidimensional deep learning model to dynamically predict kidney outcomes in IgA nephropathy[J]. Clin J Am Soc Nephrol, 2024, 19(7): 898-907. [39] 杨玲. 联合影像组学及肾脏多模态磁共振成像技术建立IgA肾病患者病理分级影像预测模型及类固醇激素疗效预测模型的临床研究[D]. 成都: 四川大学, 2022. [40] Chen W, Zhang L, Cai G, et al. Machine learning-based multimodal MRI texture analysis for assessing renal function and fibrosis in diabetic nephropathy: a retrospective study[J]. Front Endocrinol, 2023, 14: 1050078. doi: 10.3389/fendo.2023.1050078 [41] He XZ, Hu ZX, Dev H, et al. Test retest reproducibility of organ volume measurements in ADPKD using 3D multimodality deep learning[J]. Acad Radiol, 2024, 31(3): 889-899. [42] Yun D, Yang HL, Kim SG, et al. Real-time dual prediction of intradialytic hypotension and hypertension using an explainable deep learning model[J]. Sci Rep, 2023, 13: 18054. doi: 10.1038/s41598-023-45282-1 [43] Shehata M, Ghazal M, Khalifeh HA, et al. A deep learning-based cad system for renal allograft assessment: diffusion, bold, and clinical biomarkers [J]. Proc Int Conf Image Proc, 2020, 2020: 355-359. doi: 10.1109/ICIP40778.2020.9190818 [44] Siegerist F, Hay E, Dikou JS, et al. ScoMorphoFISH: a deep learning enabled toolbox for single-cell single-mRNA quantification and correlative(ultra-)morphometry[J]. J Cell Mol Med, 2022, 26(12): 3513-3526. [45] Mazin A, Hawkins SH, Stringfield O, et al. Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI[J]. Sci Rep, 2021, 11(1): 3785. doi: 10.1038/s41598-021-83271-4 [46] Prade VM, Sun N, Shen J, et al. The synergism of spatial metabolomics and morphometry improves machine learning-based renal tumour subtype classification[J]. Clin Transl Med, 2022, 12(2): e666. doi: 10.1002/ctm2.666 [47] Durán I, Castellano D, Puente J, et al. Exploring the synergistic effects of cabozantinib and a programmed cell death protein 1 inhibitor in metastatic renal cell carcinoma with machine learning[J]. Oncotarget, 2022, 13: 237-256. doi: 10.18632/oncotarget.28183 [48] Cheng G, Zhou Z, Li S, et al. Integration of proteomics and transcriptomics to construct a prognostic signature of renal clear cell carcinoma[J]. Int J Med Sci, 2024, 21(11): 2215-2232. [49] Zhu YF, Liu ML, Zheng WT, et al. Predictive model of CK7 expression in patients with clear cell renal cell carcinoma by combined multimodal ultrasound diagnostic techniques: a retrospective study[J]. Ultrasound Med Biol, 2024, 50(4): 520-527. [50] Mahootiha M, Ali Qadir H, Bergsland J, et al. Multimodal deep learning for personalized renal cell carcinoma prognosis: Integrating CT imaging and clinical data[J]. Comput Meth Programs Biomed, 2024, 244: 107978. doi: 10.1016/j.cmpb.2023.107978 [51] England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers[J]. AJR Am J roentgenol, 2019, 212(3): 513-519. [52] Jee J, Fong C, Pichotta K, et al. Automated real-world data integration improves cancer outcome prediction[J]. Nature, 2024, 636(8043): 728-736. |
| [1] | LIANG Bowen, LU Qingsheng. Advances in robotic-assisted endovascular aortic repair [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 61-65. |
| [2] | WU Fei, LI Qingli, XIAO Zhenwei. Causal association between cytokines and chronic kidney disease based on Mendelian randomization [J]. Journal of Shandong University (Health Sciences), 2024, 62(11): 85-95. |
| [3] | ZHANG Jinghui, WANG Juan, ZHAO Yujie, DUAN Miao, LIU Yiran, LIN Minjuan, QIAO Xu, LI Zhen, ZUO Xiuli. Construction of a machine learning-based tongue diagnosis model for gastrointestinal diseases [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 38-47. |
| [4] | SHAO Changxiu, HE Qingqing, ZHANG Xiaoxuan, ZHOU Peng, LI Xiaolei, YUE Tao, XU Jing, LI Chenyu, GUO Haonan, ZHUANG Dayong. Long-term efficacy of total parathyroidectomy with trace parathyroid tissue autotransplantation in the treatment of 109 cases of renal secondary hyperparathyroidism [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 42-48. |
| [5] | WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133. |
| [6] | Lin HUANG,Zhen CHE,Ming LI,Yuxi LI,Qing NING. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45. |
| [7] | Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20. |
| [8] | Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6. |
| [9] | Xiao LI,Zhiyuan SUN,Longjiang ZHANG. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20. |
| [10] | Ziliang XU,Minwen ZHENG. Innovation and challenge of imaging artificial intelligence in medical field [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 7-12, 20. |
| [11] | Pei NIE,Ximing WANG. Research progress in the application of artificial intelligence in myocardial imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 1-6. |
| [12] | Guyue ZHAO,Jin SHANG,Yang HOU. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35. |
| [13] | WANG Zhouyang, JIANG Bei, LI Xianhua, ZHEN Junhui, YANG Xiangdong, HU Zhao, LIU Guangyi, PEI Fei. A case of infective endocarditis and acute kidney injury with positive PR3-ANCA [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 60-64. |
| [14] | WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96. |
| [15] | Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21. |
|
||