Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (9): 61-65.doi: 10.6040/j.issn.1671-7554.0.2024.0321

• Advances in Basic and Clinical Research on Aortic Diseases-Research Progress • Previous Articles    

Advances in robotic-assisted endovascular aortic repair

LIANG Bowen, LU Qingsheng   

  1. Department of Vascular Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
  • Published:2024-10-10

Abstract: Endovascular surgical robot has significant advantages in the field of endovascular aortic repair, which can improve the accuracy and efficiency of operation. With the development of artificial intelligence technology, robotic-assisted endovascular aortic repair is developing towards the direction of full-process automation, high efficiency and high safety. In the future, by constructing a three-in-one surgical assistant mode architecture of surgical evaluation, surgical planning and surgical navigation, it is expected to achieve precise, intelligent and minimally-invasive treatment of vascular diseases.

Key words: Endovascular aortic repair, Endovascular surgical robot, Robotic-assisted, Artificial intelligence

CLC Number: 

  • R654.3
[1] Lederle FA, Kyriakides TC, Stroupe KT, et al. Open versus endovascular repair of abdominal aortic aneurysm[J]. N Engl J Med, 2019, 380(22): 2126-2135.
[2] Chiu P, Goldstone AB, Schaffer JM, et al. Endovascular versus open repair of intact descending thoracic aortic aneurysms[J]. J Am Coll Cardiol, 2019, 73(6): 643-651.
[3] 陆清声. 血管疾病诊治的精准智能微创时代 [J]. 中华医学杂志, 2022, 102(37): 2914-2917. LU Qingsheng. Diagnosis and treatment of vascular diseases in the era of precise, intelligent and minimally invasive surgery[J]. National Medical Journal of China, 2022, 102(37): 2914-2917.
[4] Ernst S, Ouyang FF, Linder C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation[J]. Circulation, 2004, 109(12): 1472-1475.
[5] Beyar R, Gruberg L, Deleanu D, et al. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial[J]. J Am Coll Cardiol, 2006, 47(2): 296-300.
[6] Weisz G, Metzger DC, Caputo RP, et al. Safety and feasibility of robotic percutaneous coronary intervention: precise(Percutaneous Robotically-Enhanced Coronary Intervention)Study[J]. J Am Coll Cardiol, 2013, 61(15): 1596-1600.
[7] Mahmud E, Naghi J, Ang L, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study(complex robotically AssistedPercutaneous coronary intervention)[J]. JACC Cardiovasc Interv, 2017, 10(13): 1320-1327.
[8] Durand E, Sabatier R, Smits PC, et al. Evaluation of the R-One robotic system for percutaneous coronary intervention: the R-EVOLUTION study[J]. EuroIntervention, 2023, 18(16): e1339-e1347.
[9] Riga CV, Cheshire NJW, Hamady MS, et al. The role of robotic endovascular catheters in fenestrated stent grafting[J]. J Vasc Surg, 2010, 51(4): 810-819.
[10] Cochennec F, Kobeiter H, Gohel M, et al. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures[J]. J Endovasc Ther, 2015, 22(2): 187-193.
[11] Khan EM, Frumkin W, Ng GA, et al. First experience with a novel robotic remote catheter system: amigoTM mapping trial[J]. J Interv Card Electrophysiol, 2013, 37(2): 121-129.
[12] Song C, Xia SB, Zhang H, et al. Novel endovascular interventional surgical robotic system based on biomimetic manipulation[J]. Micromachines, 2022, 13(10): 1587.
[13] Kladko DV, Vinogradov VV. Magnetosurgery: principles, design, and applications[J]. Smart Mater Med, 2024, 5(1): 24-35.
[14] Vidal V, Bargellini I, Bent C, et al. Performance evaluation of a miniature and disposable endovascular robotic device[J]. Cardiovasc Intervent Radiol, 2024, 47(4): 503-507.
[15] Riga DV, Bicknell CD, Cheshire N, et al. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair[J]. J Endovasc Ther, 2009, 16(2): 149-153.
[16] Riga CV, Bicknell CD, Rolls A, et al. Robot-assisted fenestrated endovascular aneurysm repair(FEVAR)using the Magellan system[J]. J Vasc Interv Radiol, 2013, 24(2): 191-196.
[17] Perera AH, Riga CV, Monzon L, et al. Robotic arch catheter placement reduces cerebral embolization during thoracic endovascular aortic repair(TEVAR)[J]. Eur J Vasc Endovasc Surg, 2017, 53(3): 362-369.
[18] Cheung S, Rahman R, Bicknell CD, et al. Comparison of manual versus robot-assisted contralateral gate cannulation in patients undergoing endovascular aneurysm repair[J]. Int J Comput Assist Radiol Surg, 2020, 15(12): 2071-2078.
[19] Song C, Xia SB, Zhang L, et al. A novel endovascular robotic-assisted system for endovascular aortic repair: first-in-human evaluation of practicability and safety[J]. Eur Radiol, 2023, 33(11): 7408-7418.
[20] Wang KD, Liu JY, Yan WW, et al. Force feedback controls of multi-gripper robotic endovascular intervention: design, prototype, and experiments[J]. Int J Comput Assist Radiol Surg, 2021, 16(1): 179-192.
[21] Wang KD, Mai XM, Xu HJ, et al. A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system[J]. Int J Med Robot, 2020, 16(5): 1-10.
[22] Lu QS, Shen Y, Xia SB, et al. A novel universal endovascular robot for peripheral arterial stent-assisted angioplasty: initial experimental results[J]. Vasc Endovascular Surg, 2020, 54(7): 598-604.
[23] Wang KD, Chen B, Lu QS, et al. Design and performance evaluation of real-time endovascular interventional surgical robotic system with high accuracy[J]. Int J Med Robot, 2018, 14(5): e1915.
[24] 梁博文, 陆清声. 血管腔内修复术中导航技术的研究进展和展望 [J]. 中国血管外科杂志:电子版, 2023, 15(1): 75-79. LIANG Bowen, LU Qingsheng. Research progress and prospect of navigation technology in endovascular repair[J]. Chinese Journal of Vascular Surgery(Electronic Version), 2023, 15(1): 75-79.
[25] Chen DD, Wei JY, Deng YM, et al. Virtual stenting with simplex mesh and mechanical contact analysis for real-time planning of thoracic endovascular aortic repair[J]. Theranostics, 2018, 8(20): 5758-5771.
[26] Muluk SC, Elrakhawy M, Chess B, et al. Successful endovascular treatment of severe chronic mesenteric ischemia facilitated by intraoperative positioning system image guidance[J]. J Vasc Surg Cases Innov Tech, 2022, 8(1): 60-65.
[27] van Herwaarden JA, Jansen MM, Vonken EPA, et al. First in human clinical feasibility study of endovascular navigation with fiber optic RealShape(FORS)technology[J]. Eur J Vasc Endovasc Surg, 2021, 61(2): 317-325.
[28] Maurel B, Martin-Gonzalez T, Chong D, et al. A prospective observational trial of fusion imaging in infrarenal aneurysms[J]. J Vasc Surg, 2018, 68(6): 1706-1713.
[29] De Beaufort LM, Nasr B, Corvec TL, et al. Automated image fusion guidance during endovascular aorto-iliac procedures: a randomized controlled pilot study[J]. Ann Vasc Surg, 2021, 75: 86-93. doi:10.1016/j.avsg.2021.03.023.
[30] Pore A, Li Z, DallAlba D, et al. Autonomous navigation for robot-assisted intraluminal and endovascular procedures: a systematic review[J]. IEEE Trans Robot, 2023, 39(4): 2529-2548.
[1] WEI Ren, GUO Wei. Current status of endovascular therapy for abdominal aortic aneurysm [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 13-18.
[2] WANG Lunchang, QIN Qi, SHU Chang. Advances in diagnosis and treatment of traumatic type B aortic dissection [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 19-25.
[3] YANG Jianping, GUAN Sheng, FANG Qingbo, CI Hongbo, GE Xiaohu. Advances in diagnosis and treatment of blunt thoracic aortic injury [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 36-41.
[4] ZHANG Jinghui, WANG Juan, ZHAO Yujie, DUAN Miao, LIU Yiran, LIN Minjuan, QIAO Xu, LI Zhen, ZUO Xiuli. Construction of a machine learning-based tongue diagnosis model for gastrointestinal diseases [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 38-47.
[5] Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[6] Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6.
[7] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[8] Lin HUANG,Zhen CHE,Ming LI,Yuxi LI,Qing NING. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[9] Ziliang XU,Minwen ZHENG. Innovation and challenge of imaging artificial intelligence in medical field [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 7-12, 20.
[10] Pei NIE,Ximing WANG. Research progress in the application of artificial intelligence in myocardial imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 1-6.
[11] Xiao LI,Zhiyuan SUN,Longjiang ZHANG. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20.
[12] Guyue ZHAO,Jin SHANG,Yang HOU. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35.
[13] WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96.
[14] Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73.
[15] Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!