Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (12): 7-12, 20.doi: 10.6040/j.issn.1671-7554.0.2023.0705

• The innovation and challenge of artificial intelligence in medical imaging—Expert Overview • Previous Articles     Next Articles

Innovation and challenge of imaging artificial intelligence in medical field

Ziliang XU,Minwen ZHENG*()   

  1. Department of Radiology, The First Affiliated Hospital, Air Force Medical University of PLA, Xi'an 710032, Shaanxi, China
  • Received:2023-08-10 Online:2023-12-10 Published:2024-01-11
  • Contact: Minwen ZHENG E-mail:zhengmw2007@163.com

Abstract:

With the development of science and technology, artificial intelligence (AI) has been applied in the medical imaging field gradually. However, the AI still faces many challenges. In this paper, the imaging application progress of AI in medical field will be reviewed from the aspect of tissue segmentation, auxiliary diagnosis of disease and clinical research, respectively, and the problems in them will also be pointed out. Finally, the challenges of imaging AI in medical field will be discussed.

Key words: Medical imaging, Artificial intelligence, Deep learning, Computer-aided diagnosis

CLC Number: 

  • R816
1 Russell SJ , Norvig P . Artificial Intelligence, A Modern Approach - 2nd Edition[M]. Upper Saddle River, New Jersey: Prentice Hall, 2003.
2 Chen X , Wang X , Zhang K , et al. Recent advances and clinical applications of deep learning in medical image analysis[J]. Med Image Anal, 2022, 79, 102444.
doi: 10.1016/j.media.2022.102444
3 Shokraei Fard A , Reutens DC , Vegh V . From CNNs to GANs for cross-modality medical image estimation[J]. Comput Biol Med, 2022, 146, 105556.
doi: 10.1016/j.compbiomed.2022.105556
4 Bhuva AN , Bai W , Lau C , et al. A Multicenter, scan-rescan, human and machine learning cmr study to test generalizability and precision in imaging biomarker analysis[J]. Circ Cardiovasc Imaging, 2019, 12 (10): e009214.
doi: 10.1161/circimaging.119.009214
5 Aggarwal R , Sounderajah V , Martin G , et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis[J]. NPJ Digit Med, 2021, 4 (1): 65.
doi: 10.1038/s41746-021-00438-z
6 Johnson KW , Torres Soto J , Glicksberg BS , et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71 (23): 2668- 2679.
doi: 10.1016/j.jacc.2018.03.521
7 Jain S , Indora S , Atal DK . Lung nodule segmentation using Salp Shuffled Shepherd Optimization Algorithm-based Generative Adversarial Network[J]. Comput Biol Med, 2021, 137, 104811.
doi: 10.1016/j.compbiomed.2021.104811
8 Zhao X , Wu Y , Song G , et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Med Image Anal, 2018, 43, 98- 111.
doi: 10.1016/j.media.2017.10.002
9 Alizadehsani R , Hosseini MJ , Khosravi A , et al. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries[J]. Comput Methods Programs Biomed, 2018, 162, 119- 127.
doi: 10.1016/j.cmpb.2018.05.009
10 Rajendra Acharya U , Meiburger KM , Wei Koh JE , et al. Automated plaque classification using computed tomography angiography and Gabor transformations[J]. Artif Intell Med, 2019, 100, 101724.
doi: 10.1016/j.artmed.2019.101724
11 Han D , Kolli KK , Gransar H , et al. Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches[J]. J Cardiovasc Comput Tomogr, 2020, 14 (2): 168- 176.
doi: 10.1016/j.jcct.2019.09.005
12 Han D , Kolli KK , Al'Aref SJ , et al. Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: From the PARADIGM registry[J]. J Am Heart Assoc, 2020, 9 (5): e013958.
doi: 10.1161/jaha.119.013958
13 Pham DL , Xu C , Prince JL . Current methods in medical image segmentation[J]. Annu Rev Biomed Eng, 2000, 2, 315- 337.
doi: 10.1146/annurev.bioeng.2.1.315
14 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]. MICCAI 2015, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28.
15 Shaukat Z , Farooq QUA , Tu S , et al. A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture[J]. BMC Bioinformatics, 2022, 23 (1): 251.
doi: 10.1186/s12859-022-04794-9
16 Li D , Chu X , Cui Y , et al. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer[J]. Comput Methods Programs Biomed, 2022, 213, 106493.
doi: 10.1016/j.cmpb.2021.106493
17 Li C , Song X , Zhao H , et al. An 8-layer residual U-Net with deep supervision for segmentation of the left ventricle in cardiac CT angiography[J]. Comput Methods Programs Biomed, 2021, 200, 105876.
doi: 10.1016/j.cmpb.2020.105876
18 Lian L , Luo X , Pan C , et al. Lung image segmentation based on DRD U-Net and combined WGAN with Deep Neural Network[J]. Comput Methods Programs Biomed, 2022, 226, 107097.
doi: 10.1016/j.cmpb.2022.107097
19 Jiang L , Ou J , Liu R , et al. RMAU-Net: Residual multi-scale attention U-Net for liver and tumor segmentation in CT images[J]. Comput Biol Med, 2023, 158, 106838.
doi: 10.1016/j.compbiomed.2023.106838
20 Zhou Z , Siddiquee MMR , Tajbakhsh N , et al. UNet++: a nested U-Net architecture for medical image segmentation[J]. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), 2018, 11045, 3- 11.
doi: 10.1007/978-3-030-00889-5_1
21 Xu Y , Hou S , Wang X , et al. A medical image segmentation method based on improved UNet 3+ network[J]. Diagnostics (Basel), 2023, 13 (3): 576.
doi: 10.3390/diagnostics13030576
22 Isensee F , Jaeger PF , Kohl SAA , et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18 (2): 203- 211.
doi: 10.1038/s41592-020-01008-z
23 Malhotra P , Gupta S , Koundal D , et al. Deep neural networks for medical image segmentation[J]. J Healthc Eng, 2022, 2022, 9580991.
doi: 10.1155/2022/9580991
24 van Ginneken B , Schaefer-Prokop CM , Prokop M . Computer-aided diagnosis: how to move from the laboratory to the clinic[J]. Radiology, 2011, 261 (3): 719- 732.
doi: 10.1148/radiol.11091710
25 Khav N , Ihdayhid AR , Ko B . CT-Derived Fractional Flow Reserve (CT-FFR) in the evaluation of coronary artery disease[J]. Heart Lung Circ, 2020, 29 (11): 1621- 1632.
doi: 10.1016/j.hlc.2020.05.099
26 Balasubramanian PK , Lai WC , Seng GH , et al. APESTNet with mask R-CNN for liver tumor segmentation and classification[J]. Cancers (Basel), 2023, 15 (2): 33.
27 Wang X , Li BB . Deep learning in head and neck tumor multiomics diagnosis and analysis: review of the literature[J]. Front Genet, 2021, 12, 624820.
doi: 10.3389/fgene.2021.624820
28 Turhan G , Küçük H , Isik EO . Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment[J]. Comput Methods Programs Biomed, 2022, 221, 106825.
doi: 10.1016/j.cmpb.2022.106825
29 Sahin ME , Ulutas H , Yuce E , et al. Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images[J]. Neural Comput Appl, 2023, 35 (18): 13597- 13611.
doi: 10.1007/s00521-023-08450-y
30 Eisenberg E , McElhinney PA , Commandeur F , et al. Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects[J]. Circ Cardiovasc Imaging, 2020, 13 (2): e009829.
doi: 10.1161/circimaging.119.009829
31 van der Voort SR , Incekara F , Wijnenga MMJ , et al. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning[J]. Neuro Oncol, 2023, 25 (2): 279- 289.
doi: 10.1093/neuonc/noac166
32 Ouyang D , He B , Ghorbani A , et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580 (7802): 252- 256.
doi: 10.1038/s41586-020-2145-8
33 Ruijsink B , Puyol-Antón E , Oksuz I , et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function[J]. JACC Cardiovasc Imaging, 2020, 13 (3): 684- 695.
doi: 10.1016/j.jcmg.2019.05.030
34 Knott KD , Seraphim A , Augusto JB , et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping[J]. Circulation, 2020, 141 (16): 1282- 1291.
35 Aerts HJ , Velazquez ER , Leijenaar RT , et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5, 4006.
doi: 10.1038/ncomms5006
36 Baessler B , Luecke C , Lurz J , et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure[J]. Radiology, 2019, 292 (3): 608- 617.
doi: 10.1148/radiol.2019190101
37 Di Noto T , von Spiczak J , Mannil M , et al. Radiomics for distinguishing myocardial infarction from myocarditis at late gadolinium enhancement at MRI: comparison with subjective visual analysis[J]. Radiol Cardiothorac Imaging, 2019, 1 (5): e180026.
doi: 10.1148/ryct.2019180026
38 Sun Q , Chen Y , Liang C , et al. Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma[J]. Radiology, 2021, 301 (3): 654- 663.
doi: 10.1148/radiol.2021203281
39 Kickingereder P , Neuberger U , Bonekamp D , et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma[J]. Neuro Oncol, 2018, 20 (6): 848- 857.
doi: 10.1093/neuonc/nox188
40 Xi YB , Guo F , Xu ZL , et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma[J]. J Magn Reson Imaging, 2018, 47 (5): 1380- 1387.
doi: 10.1002/jmri.25860
41 Wang X , Xie T , Luo J , et al. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment[J]. Breast Cancer Res, 2022, 24 (1): 20.
doi: 10.1186/s13058-022-01516-0
42 Honeycutt CE , Plotnick R . Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J]. Computers & Geosciences, 2008, 34 (11): 1461- 1472.
43 徐子良, 郑敏文. 人工智能在心血管影像的应用现状与展望[J]. 中华放射学杂志, 2021, 55 (6): 5.
44 Fukushima K , Miyake S . Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition, Competition and cooperation in neural nets[M]. Berlin, Heidelberg: Springer, 1982.
45 van der Velden BHM , Kuijf HJ , Gilhuijs KGA , et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis[J]. Med Image Anal, 2022, 79, 102470.
doi: 10.1016/j.media.2022.102470
46 Diprose WK , Buist N , Hua N , et al. Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator[J]. J Am Med Inform Assoc, 2020, 27 (4): 592- 600.
doi: 10.1093/jamia/ocz229
47 Alkhodari M , Jelinek HF , Karlas A H , et al. Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles[J]. Front Cardiovasc Med, 2021, 8, 755968.
doi: 10.3389/fcvm.2021.755968
[1] Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[2] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[3] LIU Yajun, YUAN Qiang, WU Jingye, HAN Xiaoguang, LANG Zhao, ZHANG Yong. Preliminary exploration of automatic planning of lumbar pedicle screws based on cone-beam CT in 130 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 80-89.
[4] Lin HUANG,Zhen CHE,Ming LI,Yuxi LI,Qing NING. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[5] Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6.
[6] LIN Bingjie, WANG Meiyun. Research status and development prospect of deep learning in medical imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 21-29.
[7] ZHAO Guyue, SHANG Jin, HOU Yang. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35.
[8] LI Xiao, SUN Zhiyuan, ZHANG Longjiang. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20.
[9] Pei NIE,Ximing WANG. Research progress in the application of artificial intelligence in myocardial imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 1-6.
[10] WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96.
[11] Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21.
[12] Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73.
[13] Jizong ZHAO. Neurosurgery plays a key role in brain science research [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 1-4.
[14] Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16.
[15] Yilong YIN,Xiaoming XI. Advances in the intelligent diagnosis of eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[2] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[3] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[5] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[7] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[8] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[9] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 53 -59 .
[10] GUO Zhihua, ZHAO Daqing, XING Yuan, WANG Wei, LIANG Leping, YANG Jing, ZHAO Qianqian. Single-stage end-to-end anastomosis in the management of severe cervical tracheal stenosis[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 72 -76 .