Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (12): 1-6.doi: 10.6040/j.issn.1671-7554.0.2023.0773

• The innovation and challenge of artificial intelligence in medical imaging—Expert Overview •     Next Articles

Research progress in the application of artificial intelligence in myocardial imaging

Pei NIE1,Ximing WANG2,*()   

  1. 1. Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
    2. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Received:2023-08-30 Online:2023-12-10 Published:2024-01-11
  • Contact: Ximing WANG E-mail:wxming369@163.com

Abstract:

Recently, artificial intelligence (AI) has shown great potential in myocardial imaging. AI algorithms achieve automatic segmentation and measurement of myocardial images thus optimizing the workflow. The quantitative features which characterized the pathological changes of myocardium were extracted through radiomics and deep learning techniques. These features may facilitate precise diagnosis and outcome prediction of ischemic and non-ischemic cardiomyopathies. In this review, we will introduce the research progress of AI in myocardial imaging from several aspects: AI-assisted image analysis, diagnosis and outcome evaluation of cardiomyopathies. The limitations of AI in myocardial imaging will also be discussed. We hope this review may provide references for further clinical application research of AI in myocardial imaging.

Key words: Artificial intelligence, Myocardium, Imaging

CLC Number: 

  • R816.2
1 徐子良, 郑敏文. 人工智能在心血管影像的应用现状及展望[J]. 中华放射学杂志, 2021, 55 (6): 687- 691.
doi: 10.3760/cma.j.cn112149-20200611-00802
XU Ziliang , ZHENG Minwen . Current application and prospects of artificial intelligence in cardiovascular imaging[J]. Chin J Radiol, 2021, 55 (6): 687- 691.
doi: 10.3760/cma.j.cn112149-20200611-00802
2 Jiang B , Guo N , Ge Y , et al. Development and application of artificial intelligence in cardiac imaging[J]. Br J Radiol, 2020, 93 (1113): 20190812.
doi: 10.1259/bjr.20190812
3 Kim KH , Kwon JM , Pereira T , et al. Artificial intelligence applied to cardiomyopathies: is it time for clinical application?[J]. Curr Cardiol Rep, 2022, 24 (11): 1547- 1555.
doi: 10.1007/s11886-022-01776-4
4 Lal S. TC-SegNet: robust deep learning network for fully automatic two-chamber segmentation of two-dimensional echocardiography[J]. Multimed Tools Appl, Jun 3: 1-19. doi: 10.1007/s11042-023-15524-5.
5 Li M , Wang C , Zhang H , et al. MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis[J]. Comput Biol Med, 2020, 120, 103728.
doi: 10.1016/j.compbiomed.2020.103728
6 Zamzmi G , Rajaraman S , Hsu LY , et al. Real-time echocardiography image analysis and quantification of cardiac indices[J]. Med Image Anal, 2022, 80, 102438.
doi: 10.1016/j.media.2022.102438
7 Abdeltawab H , Khalifa F , Taher F , et al. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images[J]. Comput Med Imaging Graph, 2020, 81, 101717.
doi: 10.1016/j.compmedimag.2020.101717
8 Kim YC , Kim KR , Choi K , et al. EVCMR: A tool for the quantitative evaluation and visualization of cardiac MRI data[J]. Comput Biol Med, 2019, 111, 103334.
doi: 10.1016/j.compbiomed.2019.103334
9 Lustermans DRPRM , Amirrajab S , Veta M , et al. Optimized automated cardiac MR scar quantification with GAN-based data augmentation[J]. Comput Methods Programs Biomed, 2022, 226, 107116.
doi: 10.1016/j.cmpb.2022.107116
10 Zhang Q , Burrage MK , Lukaschuk E , et al. Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy[J]. Circulation, 2021, 144 (8): 589- 599.
doi: 10.1161/CIRCULATIONAHA.121.054432
11 Zhang Q , Burrage MK , Shanmuganathan M , et al. Artificial intelligence for contrast-free MRI: scar assessment in myocardial infarction using deep learning-based virtual native enhancement[J]. Circulation, 2022, 146 (20): 1492- 1503.
doi: 10.1161/CIRCULATIONAHA.122.060137
12 Koo HJ , Lee JG , Ko JY , et al. Automated segmentation of left ventricular myocardium on cardiac computed tomography using deep learning[J]. Korean J Radiol, 2020, 21 (6): 660- 669.
doi: 10.3348/kjr.2019.0378
13 He X , Guo BJ , Lei Y , et al. Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study[J]. Eur Radiol, 2021, 31 (6): 3826- 3836.
doi: 10.1007/s00330-020-07482-5
14 Zhu F , Li L , Zhao J , et al. A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images[J]. Comput Biol Med, 2023, 160, 106954.
doi: 10.1016/j.compbiomed.2023.106954
15 Zhang Y , Wang F , Wu H , et al. An automatic segmentation method with self-attention mechanism on left ventricle in gated PET/CT myocardial perfusion imaging[J]. Comput Methods Programs Biomed, 2023, 229, 107267.
doi: 10.1016/j.cmpb.2022.107267
16 Beliveau P , Cheriet F , Anderson SA , et al. Textural analysis of late gadolinium enhanced magnetic resonance images can discriminate acute from chronic myocardial infarction[J]. J Cardiovasc Magn Reson, 2014, 16 (Suppl 1): 182.
17 Beliveau P , Cheriet F , Anderson SA , et al. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation[J]. Comput Biol Med, 2015, 65, 103- 113.
doi: 10.1016/j.compbiomed.2015.07.027
18 Yang YC , Dou Y , Wang ZW , et al. Prediction of myocardial ischemia in coronary heart disease patients using a CCTA-Based radiomic nomogram[J]. Front Cardiovasc Med, 2023, Jan 19, 1024773.
doi: 10.3389/fcvm.2023.1024773
19 Zhu MM , Zhu XM , Lin SS , et al. The incremental value of CCTA-derived myocardial radiomics signature for ischemia diagnosis with reference to CT myocardial perfusion imaging[J]. Br J Radiol, 2023, 96 (1148): 20220971.
doi: 10.1259/bjr.20220971
20 van Hamersvelt RW , Zreik M , Voskuil M , et al. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis[J]. Eur Radiol, 2019, 29 (5): 2350- 2359.
doi: 10.1007/s00330-018-5822-3
21 Baessler B , Mannil M , Oebel S , et al. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images[J]. Radiology, 2018, 286 (1): 103- 112.
doi: 10.1148/radiol.2017170213
22 Jiang S , Zhang L , Wang J , et al. Differentiating between cardiac amyloidosis and hypertrophic cardiomyopathy on non-contrast cine-magnetic resonance images using machine learning-based radiomics[J]. Front Cardiovasc Med, 2022, 9, 1001269.
doi: 10.3389/fcvm.2022.1001269
23 Shi RY , Wu R , An DL , et al. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls[J]. Clin Radiol, 2021, 76 (3): 236.e9- 236.e19.
doi: 10.1016/j.crad.2020.11.001
24 Wang ZC , Fan ZZ , Liu XY , et al. Deep learning for discrimination of hypertrophic cardiomyopathy and hypertensive heart disease on MRI native T1 maps[J]. J Magn Reson Imaging, 2023, Jul 11
doi: 10.1002/jmri.28904
25 Chen BH , An DA , He J , et al. Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction[J]. Eur Radiol, 2021, 31 (1): 504- 514.
doi: 10.1007/s00330-020-07117-9
26 Ma Q , Ma Y , Yu T , et al. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction[J]. Korean J Radiol, 2021, 22 (4): 535- 546.
doi: 10.3348/kjr.2019.0969
27 Durmaz ES , Karabacak M , Ozkara BB , et al. Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events[J]. Eur Radiol, 2023, 33 (7): 4611- 4620.
doi: 10.1007/s00330-023-09394-6
28 Mohebi M , Amini M , Alemzadeh-Ansari MJ , et al. Post-revascularization ejection fraction prediction for patients undergoing percutaneous coronary intervention based on myocardial perfusion SPECT imaging radiomics: a preliminary machine learning study[J]. J Digit Imaging, 2023, 36 (4): 1348- 1363.
doi: 10.1007/s10278-023-00820-1
29 Zhang J , Xu Y , Li W , et al. The predictive value of myocardial native T1 mapping radiomics in dilated cardiomyopathy: a study in a Chinese population[J]. J Magn Reson Imaging, 2023, 58 (3): 772- 779.
doi: 10.1002/jmri.28527
30 Fahmy AS , Rowin EJ , Jaafar N , et al. Radiomics of late gadolinium enhancement reveals prognostic value of myocardial scar heterogeneity in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2023, Jun 8, S1936-878X(23)00222-X.
doi: 10.1016/j.jcmg.2023.05.003
31 Lin A, Kolossváry M, Motwani M, et al. Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease[J]. Radiol Cardiothorac Imaging. 2021, 25: 3(1): e200512. doi: 10.1148/ryct.2021200512.
32 Alis D , Yergin M , Asmakutlu O , et al. The influence of cardiac motion on radiomics features: radiomics features of non-enhanced CMR cine images greatly vary through the cardiac cycle[J]. Eur Radiol, 2021, 31 (5): 2706- 2715.
doi: 10.1007/s00330-020-07370-y
33 王琳琳, 孙玉萍. 从临床医生角度, 看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报(医学版), 2021, 59 (9): 89- 96.
WANG Linlin , SUN Yuping . From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment[J]. Journal of Shandong University (Health Sciences), 2021, 59 (9): 89- 96.
34 Ponsiglione A , Stanzione A , Cuocolo R , et al. Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment[J]. Eur Radiol, 2022, 32 (4): 2629- 2638.
doi: 10.1007/s00330-021-08375-x
35 Lee S , Han K , Suh YJ . Quality assessment of radiomics research in cardiac CT: a systematic review[J]. Eur Radiol, 2022, 32 (5): 3458- 3468.
doi: 10.1007/s00330-021-08429-0
36 Muscogiuri G , Van Assen M , Tesche C , et al. Artificial intelligence in coronary computed tomography angiography: from anatomy to prognosis[J]. Biomed Res Int, 2020, 2020, 6649410.
doi: 10.1155/2020/6649410
[1] JIN Xinjuan, ZUO Liping, DENG Zhanhao, LI Anning, YU Dexin. Value of enhanced MRI radiomics in predicting the drug-resistant protein PFKFB3 in 135 cases of hepatocellular carcinoma [J]. Journal of Shandong University (Health Sciences), 2023, 61(6): 79-86.
[2] LI Qing, ZHANG Anna, DU Yansheng, DIAO Jiuzhou, CUI Ruojin, FU Pengrui, YUE Xinyi, ZHOU Qingbo. Influencing factors of the transformation of single demyelinating lesion of spinal cord in 47 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 37-43.
[3] Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6.
[4] Lin HUANG,Zhen CHE,Ming LI,Yuxi LI,Qing NING. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[5] WANG Lei, ZHANG Shuai, LIU Gang, YOU Shengnan, WANG Zhi, ZHU Shan, CHEN Chao, MA Xinlong, YANG Qiang. Comparison of MRI diagnosis of 140 cases of MCs using intelligent network automatic detection and classification methods [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 71-79.
[6] GUO Yongyuan, SUN Houyi, ZHANG Yuankai, YAN Tingbin, LIU Peilai, JIA Yuhua. Learning curve of domestic “Skywalker” robotic-assisted total knee arthroplasty [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 115-120.
[7] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[8] Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[9] ZHAO Geng, MAI Ruopeng, ZHAO Jingcai, LIU Xinyu. Minimally invasive channel of the lumbar spine surgery for Chinese: anatomical data based on CT imaging measurements [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 90-96.
[10] YANG Yongqing, ZHAO Peng, WANG Yu, MA Wenjing, TIAN Mimi, CHENG Yani, ZU Lu, LIN Xiangtao. Diagnostic value of extracellular volume fraction in 62 cases of different pathological types of lung cancer [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 88-94.
[11] Ziliang XU,Minwen ZHENG. Innovation and challenge of imaging artificial intelligence in medical field [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 7-12, 20.
[12] Xiao LI,Zhiyuan SUN,Longjiang ZHANG. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20.
[13] Guyue ZHAO,Jin SHANG,Yang HOU. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35.
[14] ZHU Zhengyang, SHEN Jingfei, CHEN Sixuan, YE Meiping, YANG Huiquan, ZHOU Jianan, LIANG Xue, ZHANG Xin, ZHANG Bing. Prediction of isocitrate dehydrogenase mutation in glioma with different radiomic models based on susceptibility-weighted imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 44-50.
[15] JIN Xinjuan, CAI Daxing, FAN Jinlei, DENG Zhanhao, LI Nan, YU Dexin, LI Anning. Differentiation of benign and malignant skin focal protuberant nodules using microscope high-resolution MRI [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 51-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[2] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[4] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[5] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[6] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[7] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[8] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[9] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[10] GUO Zhihua, ZHAO Daqing, XING Yuan, WANG Wei, LIANG Leping, YANG Jing, ZHAO Qianqian. Single-stage end-to-end anastomosis in the management of severe cervical tracheal stenosis[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 72 -76 .