Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (11): 33-38.doi: 10.6040/j.issn.1671-7554.0.2020.1136
• Special topic on new progress in ophthalmic artificial intelligence • Previous Articles Next Articles
CLC Number:
1 |
Kanagasingam Y , Bhuiyan A , Abràmoff MD , et al. Progress on retinal image analysis for age related macular degeneration[J]. Prog Retin Eye Res, 2014, 38: 20- 42.
doi: 10.1016/j.preteyeres.2013.10.002 |
2 |
Acott TS , Vranka JA , Keller KE , et al. Progress in retinal and eye research normal and glaucomatous outflow regulation[J]. Prog Retin Eye Res, 2020, 11: 100897.
doi: 10.1016/j.preteyeres.2020.100897 |
3 | Ahmed SF, Walid MA, Ahmed EM, Segmentation of Choroidal Neovascularization Lesions in Fluorescein Angiograms Using Parametric Modeling of the Intensity Variation[C]. IEEE Trans Biomed Eng, 2011: 1457-1460. doi: 10.1109/TBME.2013.2237906.Epub2013Jan9. |
4 | Lin KS , Tsai CL , Chen SJ , et al. Automatic Evaluation of Choroidal Neovascularization in Fluorescein Angiography[J]. Advances in Intelligent Systems and Applications, 2013, 21 (2): 377- 382. |
5 |
Tsai CL , Yang YL , Chen SJ , et al. Automatic characterization of classic choroidal neovascularization by using adaboost for supervised learning[J]. Invest Ophthalmol Vis Sci, 2011, 52 (5): 2767- 2774.
doi: 10.1167/iovs.10-6048 |
6 | Abdelmoula WM , Shah SM , Fahmy AS . Segmentation of choroidal neovascularization in fundus fluorescein angiograms[J]. IEEE Trans Biomed Eng, 2013, 60 (5): 1439- 1445. |
7 |
Gao SS , Liu L , Bailey ST , et al. Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography[J]. J Biomed Opt, 2016, 21 (7): 76010.
doi: 10.1117/1.JBO.21.7.076010 |
8 |
Tan NM , Xu Y , Goh WB , et al. Robust multi-scale superpixel classification for optic cup localization[J]. Comput Med Imaging Graph, 2015, 40: 182- 193.
doi: 10.1016/j.compmedimag |
9 | Thakur N , Juneja M . Clustering based approach for segmentation of optic cup and optic disc for detection of Glaucoma[J]. Curr Med Imaging Rev, 2017, 13 (1): 99- 105. |
10 |
Cheng J , Liu J , Xu Y , et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening[J]. IEEE Trans Med Imaging, 2013, 32 (6): 1019- 1032.
doi: 10.1109/TMI.2013.2247770 |
11 |
Girshick R , Donahue J , Darrell T , et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38 (1): 142- 158.
doi: 10.1109/TPAMI.2015.2437384 |
12 | Dahl GE , Yu D , Deng L , et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Trans Audio Speech Lang Process, 2012, 20 (1): 30- 42. |
13 |
Mohamed AR , Dahl GE , Hinton G . Acoustic modeling using deep belief networks[J]. IEEE Trans Audio Speech Lang Process, 2012, 20 (1): 14- 22.
doi: 10.1109/TASL.2011.2109382 |
14 |
Ling ZH , Deng L , Yu D , et al. Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis[J]. IEEE Trans Audio Speech Lang Process, 2013, 21 (10): 2129- 2139.
doi: 10.1109/TASL.2013.2269291 |
15 |
Zilly J , Buhmann JM , Mahapatra D . Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation[J]. Comput Med Imaging Graph, 2017, 55: 28- 41.
doi: 10.1016/j.compmedimag |
16 | Fu HZ , Cheng J , Xu YW , et al. Joint optic disc and cup segmentation based on mufti-label deep network and polar transformation[J]. IEEE Trans Med Imaging, 2018, 37 (7): 1597- 1605. |
17 | Xie Z , Ling T , Yang Y , et al. Optic disc and cup image segmentation utilizing contour-based transformation and sequence labeling networks[J]. J Med Syst, 2020, 44 (5): 1- 13. |
18 | Jiang YM , Duan LX , Cheng J , et al. Joint RCNN: a region-based convolutional neural network for optic disc and cup segmentation[J]. IEEE Trans Biomed Eng, 2020, 67 (2): 335- 343. |
19 | Yang XB , Zhang Y . Multi-atlas segmentation of optic disc in retinal images via convolutional neural network[J]. Multimed Tools Appl, 2020, 1- 11. |
20 | Rong YB, Yu K, Xiang DH, et al. Explaining convolutional neural networks for area estimation of choroidal neovascularization via genetic programming[M]//Computational pathology and ophthalmic medical image analysis. cham: springer international publishing, 2018: 210-218. doi: 10.1007/978-3-030-00949-6_25. |
21 | Maunz A , Benmansour F , Li Y , et al. Diagnostic accuracy of a machine-learning algorithm to detect and classify choroidal neovascularization based on SD-OCT in neovascular age-related macular degeneration (nAMD)[J]. Invest Ophthalmol Vis Sci, 2020, 61 (7): 2649- 2649. |
22 | Guan L, Yu K, Chen X. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE[C]. In Medical Imaging 2019: Image Processing. 2019: 1094933. doi: 10.1117/12.2512656. |
23 | Xi XM , Meng XJ , Yang L , et al. Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior[J]. Multimed Syst, 2019, 25 (2): 95- 102. |
24 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
25 |
Takahashi H , Tampo H , Arai Y , et al. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy[J]. PLoS One, 2017, 12 (6): e0179790.
doi: 10.1371/journal.pone.0179790 |
26 |
Shankar K , Sait ARW , Gupta D , et al. Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model[J]. Pattern Recognit Lett, 2020, 133: 210- 216.
doi: 10.1016/j.patrec.2020.02.026 |
27 |
Qummar S , Khan FG , Shah S , et al. A deep learning ensemble approach for diabetic retinopathy detection[J]. IEEE Access, 2019, 7: 150530- 150539.
doi: 10.1109/access.2019.2947484 |
28 |
de la Torre J , Valls A , Puig D . A deep learning interpretable classifier for diabetic retinopathy disease grading[J]. Neurocomputing, 2020, 396: 465- 476.
doi: 10.1016/j.neucom.2018.07.102 |
29 | Alqudah AM . AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images[J]. Med Biol Eng Comput, 2020, 58 (1): 41- 53. |
30 |
Fang LY , Jin YX , Huang LF , et al. Iterative fusion convolutional neural networks for classification of optical coherence tomography images[J]. J Vis Commun Image Represent, 2019, 59: 327- 333.
doi: 10.1016/j.jvcir.2019.01.022 |
31 |
Fang L , Wang C , Li S , et al. Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification[J]. IEEE Trans Med Imaging, 2019, 38 (8): 1959- 1970.
doi: 10.1109/TMI.2019.2898414 |
32 |
Das V , Prabhakararao E , Dandapat S , et al. B-scan attentive CNN for the classification of retinal optical coherence tomography volumes[J]. IEEE Signal Process Lett, 2020, 27: 1025- 1029.
doi: 10.1109/LSP.2020.3000933 |
33 | Abbas Q . Glaucoma-deep: detection of Glaucoma eye disease on retinal fundus images using deep learning[J]. Ijacsa, 2017, 8 (6): 41- 45. |
34 |
Diaz-Pinto A , Morales S , Naranjo V , et al. Cnns for automatic glaucoma assessment using fundus images: an extensive validation[J]. BioMed Eng OnLine, 2019, 18: 29.
doi: 10.1186/s12938-019-0649-y |
35 |
Fu HZ , Cheng J , Xu YW , et al. Disc-aware ensemble network for glaucoma screening from fundus image[J]. IEEE Trans Med Imaging, 2018, 37 (11): 2493- 2501.
doi: 10.1109/TMI.2018.2837012 |
36 | Petersen CA , Mehta P , Lee AY , et al. Data-driven, feature-agnostic deep learning vs retinal nerve fiber layer thickness for the diagnosis of glaucoma[J]. JAMA Ophthalmol, 2020, 138 (4): 339- 340. |
37 |
Chai YD , Liu HY , Xu J . Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models[J]. Knowl-Based Syst, 2018, 161: 147- 156.
doi: 10.1016/j.knosys.2018.07.043 |
38 | Xu X , Zhang LL , Li JQ , et al. A hybrid global -local representation CNN model for automatic cataract grading[J]. IEEE J Biomed Health Inform, 2020, 24 (2): 556- 567. |
39 | Long EP , Lin HT , Liu ZZ , et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 2017, 1 (2): 0024. |
40 |
Gao XT , Lin S , Wong TY . Automatic feature learning to grade nuclear cataracts based on deep learning[J]. Comput Vis--ACCV 2014, 2015, 2693- 2701.
doi: 10.1007/978-3-319-16808-1_42 |
41 |
Zhang H , Niu K , Xiong Y , et al. Automatic cataract grading methods based on deep learning[J]. Comput Methods Programs Biomed, 2019, 182: 104978.
doi: 10.1016/j.cmpb.2019.07.006 |
42 |
Zhou Y , Li GQ , Li HQ . Automatic cataract classification using deep neural network with discrete state transition[J]. IEEE Trans Med Imaging, 2020, 39 (2): 436- 446.
doi: 10.1109/TMI.2019.2928229 |
[1] | Yilong YIN,Xiaoming XI,Xianjing MENG. Intelligent diagnosis methods of Alzheimer's disease [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 14-21. |
[2] | Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16. |
|