您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (7): 104-111.doi: 10.6040/j.issn.1671-7554.0.2021.0241

• • 上一篇    

基于两样本孟德尔随机化的肺功能与新型冠状病毒肺炎病死风险的因果关系

杨璇,李岩志,马伟,贾崇奇   

  • 发布日期:2021-07-16
  • 通讯作者: 马伟. E-mail:weima@sdu.edu.cn贾崇奇. E-mail:jiachongqi@sdu.edu.cn

Causal influence of lung function on risk of fatality of COVID-19: a two-sample Mendelian randomization study

YANG Xuan, LI Yanzhi, MA Wei, JIA Chongqi   

  1. Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
  • Published:2021-07-16

摘要: 目的 采用两样本孟德尔随机化方法探索肺功能与新型冠状病毒肺炎(COVID-19)病死风险之间的因果关联。 方法 对基于全基因关联研究(GWAS)的汇总数据进行二次数据分析。利用大样本GWAS汇总数据,选择与肺功能密切关联的遗传位点作为工具变量,分别用逆方差加权法、MR-Egger回归和加权中位数法做两样本孟德尔随机化分析,以OR值评价肺功能与COVID-19病死风险之间的因果关系。 结果 共纳入287个单核苷酸多态性作为工具变量,MR-Egger回归结果表明基因多效性不会对结果造成偏倚(P=0.107)。逆方差加权法结果显示,肺功能每增加一个标准差,会导致COVID-19患者病死风险降低62%(OR=0.38, 95%CI: 0.18~0.80)。MR-Egger回归也得到了相似的结果(OR=0.08, 95%CI: 0.01~0.61)。加权中位数法结果显示肺功能与COVID-19病死风险之间关联无统计学意义(OR=0.44, 95%CI: 0.14~1.42)。 结论 肺功能与COVID-19病死风险之间可能存在负向因果关联。

关键词: 孟德尔随机化, 肺功能, 新型冠状病毒肺炎, 因果推断

Abstract: Objective To investigate whether lung function was causally associated with risk of fatality of COVID-19 based on a two-sample Mendelian randomization study. Methods This two-sample Mendelian randomization study used summary-level datasets of genome-wide association studies(GWAS)of forced vital capacity(FVC)and risk of fatality of COVID-19 from the UK Biobank. Inverse-variance weighted(IVW), MR-Egger regression, and weighted median estimator(WME)were conducted to investigate the association of lung function with risk of fatality of COVID-19, in which the OR values were used as indicators. Results A total of 287 single nucleotide polymorphisms were enrolled as instrumental variables. Statistically significant directional pleiotropy was not found(P=0.107). IVW regression demonstrated that per 1 elevated SD of FVC resulted in decreasing 62% of fatality risk in COVID-19 patients(OR=0.38, 95%CI: 0.18-0.80). MR-Egger regression also obtained a similar effect(OR=0.08, 95%CI: 0.01-0.61). WME analysis showed no significant association of FVC with risk of fatality of COVID-19(OR=0.44, 95%CI: 0.14-1.42). Conclusion Lung function might be negatively related to risk of fatality of COVID-19.

Key words: Mendelian randomization, Lung function, COVID-19, Causality inference

中图分类号: 

  • R563.1
[1] WHO. Weekly operational update on COVID-19 31 May 2021 [EB/OL].(2021-05-31)[2021-06-01]. https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19-31-may-2021.
[2] Esposito AJ, Menon AA, Ghosh AJ, et al. Increased odds of death for patients with interstitial lung disease and COVID-19: a case-control study [J]. Am J Respir Crit Care Med, 2020, 202(12): 1710-1713.
[3] Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis [J]. Eur Respir J, 2020, 55(5): 2000547. doi: 10.1183/13993003.00547-2020.
[4] 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析 [J]. 中华流行病学杂志, 2020, 41(2): 145-151. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases(COVID-19)in China [J]. Chin J Epidemiol, 2020, 41(2): 145-151.
[5] Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis [J]. PLoS One, 2020, 15(5): e0233147. doi: 10.1371/journal.pone.0233147.
[6] Ebrahim S, Smith GD. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? [J]. Hum Genet, 2008, 123(1): 15-33.
[7] Thomas DC, Conti DV. Commentary: the concept of ‘Mendelian randomization’ [J]. Int J Epidemiol, 2004, 33(1): 21-25.
[8] Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome [J]. Elife, 2018, 7: e34408. doi: 10.7554/eLife.34408.
[9] Hartwig FP, Davies NM, Hemani G, et al. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique [J]. Int J Epidemiol, 2016, 45(6): 1717-1726.
[10] Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants [J]. Int J Epidemiol, 2011, 40(3): 740-752.
[11] Greenland S. An introduction to instrumental variables for epidemiologists [J]. Int J Epidemiol, 2018, 47(1): 358. doi: 10.1093/ije/dyx275.
[12] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-egger method [J]. Eur J Epidemiol, 2017, 32(5): 377-389.
[13] Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases [J]. Nat Genet, 2018, 50(5): 693-698.
[14] Yavorska OO, Burgess S. Mendelian randomization: an R package for performing Mendelian randomization analyses using summarized data [J]. Int J Epidemiol, 2017, 46(6): 1734-1739.
[15] Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J]. Int J Epidemiol, 2015, 44(2): 512-525.
[16] Bowden J, Smith GD, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator [J]. Genet Epidemiol, 2016, 40(4): 304-314.
[17] 王莉娜, ZHANG Zuofeng. 孟德尔随机化法在因果推断中的应用 [J]. 中华流行病学杂志, 2017, 38(4): 547-552. WANG Lina, ZHANG Zuofeng. Mendelian randomization approach, used for causal inferences [J]. Chinese Journal of Epidemiology, 2017, 38(4): 547-552.
[18] Bowden J, Spiller W, Del Greco MF, et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression [J]. Int J Epidemiol, 2018, 47(4): 1264-1278.
[19] 王玉琢, 沈洪兵. 孟德尔随机化研究应用于因果推断的影响因素及其结果解读面临的挑战 [J]. 中华流行病学杂志, 2020, 41(8): 1231-1236. WANG Yuzhuo, SHEN Hongbing. Challenges and factors that influencing causal inference and interpretation, based on Mendelian randomization studies [J]. Chinese Journal of Epidemiology, 2020, 41(8): 1231-1236.
[20] Friedman GD, Klatsky AL, Siegelaub AB. Lung function and risk of myocardial infarction and sudden cardiac death [J]. N Engl J Med, 1976, 294(20): 1071-1075.
[21] Vasquez MM, Zhou M, Hu C, et al. Low lung function in young adult life is associated with early mortality [J]. Am J Respir Crit Care Med, 2017, 195(10): 1399-1401.
[22] Truelsen T, Prescott E, Lange P, et al. Lung function and risk of fatal and non-fatal stroke. The Copenhagen city heart study [J]. Int J Epidemiol, 2001, 30(1): 145-151.
[23] Agustí A, Noell G, Brugada J, et al. Lung function in early adulthood and health in later life: a transgenerational cohort analysis [J]. Lancet Respir Med, 2017, 5(12): 935-945.
[24] Leung JM, Niikura M, Yang CWT, et al. COVID-19 and COPD [J]. Eur Respir J, 2020, 56(2): 2002108. doi: 10.1183/13993003.02108-2020.
[25] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. Cell, 2020, 181(2): 271-280.e8.
[26] Wadman M, Couzin-Frankel J, Kaiser J, et al. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes [EB/OL].(2020-04-17)[2021-06-01]. https://www.sciencemag.org/news/2020/04/how-does-coronavirus-kill-clinicians-trace-ferocious-rampage-through-body-brain-toes.
[27] Haworth S, Mitchell R, Corbin L, et al. Apparent latent structure within the UK biobank sample has implications for epidemiological analysis [J]. Nat Commun, 2019, 10(1): 333. doi: 10.1038/s41467-018-08219-1.
[28] Emdin CA, Khera AV, Kathiresan S. Mendelian randomization [J]. JAMA, 2017, 318(19): 1925-1926.
[1] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[2] 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16.
[3] 任敏敏,王广梅,张丽,杨瑶瑶,封丹珺. 335名抗疫一线护理人员心理弹性对共情疲劳的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 88-94.
[4] 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53.
[5] 李岩,牛瑞,王超超. 122例哮喘患者舒张试验结果分析[J]. 山东大学学报 (医学版), 2020, 58(11): 81-84.
[6] 白尧,陈志军,宋姝璇,贺真,陈保忠,邵中军,刘昆. 西安市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 95-99.
[7] 张辉, 宋姝璇, 刘继锋, 贺真, 邵中军, 刘昆. 西安市新型冠状病毒肺炎疫情分析[J]. 山东大学学报 (医学版), 2020, 58(10): 89-94.
[8] 刘利利,贾艳,齐畅,朱雨辰,李春雨,佘凯丽,刘廷轩,李秀君. 基于时空统计方法分析温州市2020年1~3月新型冠状病毒肺炎的聚集性分布[J]. 山东大学学报 (医学版), 2020, 58(10): 82-88.
[9] 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81.
[10] 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73.
[11] 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59.
[12] 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52.
[13] 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43.
[14] 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37.
[15] 金新叶,卢珍珍,丁中兴,陈峰,彭志行. 武汉交通管制和集中隔离对新型冠状病毒肺炎疫情影响的动力学模型研究[J]. 山东大学学报 (医学版), 2020, 58(10): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!