Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (11): 68-74.doi: 10.6040/j.issn.1671-7554.0.2025.0696

• Clinical Medicine • Previous Articles    

Application and evaluation of Vision-LSTM model in diagnostic ultrasound imaging of Thyroid Imaging Reporting and Data System Category 4b thyroid nodules

ZHANG Xinru, LI Yang, SUN Meng, NIE Wei, MA Zhe   

  1. Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University &
    Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
  • Published:2025-11-28

Abstract: Objective To evaluate the diagnostic accuracy and clinical utility of a Vision-LSTM-based artificial intelligence(AI)model in classifying Thyroid Imaging Reporting and Data System Category 4b(TI-RADS 4b)thyroid nodules on ultrasound. Methods This study utilized ultrasound imaging data from 401 TI-RADS 4b thyroid nodules. A Vision-LSTM model was developed and validated. The AIs diagnostic performance was compared against that of junior and senior physicians using key metrics, including the area under the curve(AUC)and the precision-recall curve(PRC). Results On an independent validation set, the Vision-LSTM model achieved an AUC of 0.88 and an accuracy of 89.4%, significantly outperforming junior physicians(AUC: 0.624)and performing on par with senior physicians(AUC: 0.787). The model demonstrated a high capability for identifying complex sonographic features and delivering consistent diagnostic outcomes.The AI model was able to accurately identify the complex features in ultrasound images, and consistently produced consistent diagnostic results, demonstrating a high degree of accuracy and reliability. Conclusion The Vision-LSTM-based AI model significantly improves the diagnostic efficiency and accuracy for TI-RADS 4b thyroid nodules, showing great potential as an effective tool to support clinical decision-making and reduce physician workload.

Key words: Thyroid Imaging Reporting and Data System, Thyroid nodules, Vision-LSTM model, Diagnostic accuracy, Artificial intelligence

CLC Number: 

  • R736.1
[1] Malhi HS, Grant EG. Ultrasound of thyroid nodules and the thyroid imaging reporting and data system[J]. Neuroimaging Clin N Am, 2021, 31(3): 285-300.
[2] Liang FP, Li X, Ji Q, et al. Revised thyroid imaging reporting and data system(TIRADS): imitating the American college of radiology TIRADS, a single-center retrospective study[J]. Quant Imaging Med Surg, 2023, 13(6): 3862-3872.
[3] Chen ZG, Du Y, Cheng LG, et al. Diagnostic perfor-mance of simplified TI-RADS for malignant thyroid nodules: comparison with 2017 ACR-TI-RADS and 2020 C-TI-RADS[J]. Cancer Imaging, 2022, 22(1): 41. doi: 10.1186/s40644-022-00478-y
[4] 田文, 孙辉. 超声引导下甲状腺结节和颈部淋巴结细针穿刺活检中国专家共识及操作指南(2025版)[J]. 中国实用外科杂志, 2025, 45(1): 34-41. TIAN Wen, SUN Hui. Chinese expert consensus and operational guidelines for ultrasound-guided fine needle aspiration biopsy of thyroid nodules and cervical lymph nodes(2025 edition)[J]. Chinese Journal of Practical Surgery, 2025, 45(1): 34-41.
[5] Velez Torres JM, Vaickus LJ, Kerr DA. Thyroid fine-needle aspiration: the current and future landscape of cytopathology[J]. Surg Pathol Clin, 2024, 17(3): 371-381.
[6] 钟迪, 唐棣, 高小强, 等. 多模态超声与超声引导下细针穿刺抽吸活检鉴别C-TIRADS 4类甲状腺良、恶性结节[J]. 中国医学影像技术, 2024, 40(2): 182-185. ZHONG Di, TANG Di, GAO Xiaoqiang, et al. Differentiation of benign and malignant C-TIRADS category 4 thyroid nodules by multimodal ultrasound and ultrasound-guided fine-needle aspiration biopsy[J]. Chinese Journal of Medical Imaging Technology, 2024, 40(2): 182-185.
[7] 刘燕, 曹广磊, 陈丽. 超声引导下细针穿刺和BRAFV600E分子检测在甲状腺癌诊断中的价值[J]. 山东大学学报(医学版), 2022, 60(10): 57-61. LIU Yan, CAO Guanglei, CHEN Li. Ultrasound-guided fine needle aspiration biopsy and BRAFV600E molecular detection in the diagnosis of thyroid cancer[J]. Journal of Shandong University(Health Science), 2022, 60(10): 57-61.
[8] 徐子良, 郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报(医学版), 2023, 61(12): 7-12. XU Ziliang, ZHENG Minwen. Era innovation and challenges of imaging artificial intelligence in the medical field[J]. Journal of Shandong University(Health Sciences), 2023, 61(12): 7-12.
[9] Wang J, Jiang J, Zhang D, et al. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules[J]. Eur Radiol, 2022, 32(3): 2120-2129.
[10] Shen YT, Chen L, Yue WW, et al. Artificial intelligence in ultrasound[J]. Eur J Radiol, 2021, 139: 109717. doi: 10.1016/j.ejrad.2021.109717
[11] Donahue J, Hendricks LA, Rohrbach M, et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 677-691.
[12] 陈莉军, 王琳. 影像组学在甲状腺结节定性诊断中的研究进展[J]. 磁共振成像, 2025, 16(2): 165-171. CHEN Lijun, WANG Lin. Research progress of radiomics in the qualitative diagnosis of thyroid nodules[J]. Magnetic Resonance Imaging, 2025, 16(2): 165-171.
[13] 陈冲, 陈俊, 夏黎明. 人工智能促进医学影像临床应用与研究[J]. 放射学实践, 2024, 39(1): 12-16. CHEN Chong, CHEN Jun, XIA Liming. Artificial intelligence promotes clinical application and research in medical imaging[J]. Journal of Radiology Practice, 2024, 39(1): 12-16.
[14] Kumari S, Singh P. Deep learning for unsupervised domain adaptation in medical imaging: recent advancements and future perspectives[J]. Comput Biol Med, 2024, 170: 107912. doi: 10.1016/j.compbiomed.2023.107912
[15] 汪洋, 王永仁, 陈雯, 等. 人工智能在医学影像学辅助诊疗中的发展及应用研究新进展[J]. 影像研究与医学应用, 2024, 8(11): 9-11. WANG Yang, WANG Yongren, CHEN Wen, et al. New progress in the development and application of artificial intelligence in assisted diagnosis and treatment of medical imaging[J]. Journal of Imaging Research and Medical Applications, 2024, 8(11): 9-11.
[16] Giger ML. Computer-aided detection and diagnosis/radiomics/machine learning/deep learning in medical imaging[J]. Med Phys, 2023, 50(supp1): 50-53.
[17] Shafiq M, Gu ZQ. Deep residual learning for image recognition: a survey[J]. Appl Sci, 2022, 12(18): 8972. doi: 10.3390/app12188972
[18] Webb JM, Meixner DD, Adusei SA, et al. Automatic deep learning semantic segmentation of ultrasound thyroid cineclips using recurrent fully convolutional networks[J]. IEEE Access, 2021, 9: 5119-5127. doi: 10.1109/access.2020.3045906
[19] 王玮. 面向医学图像的神经网络模型鲁棒性研究[D]. 贵阳: 贵州大学, 2024.
[20] Ong JCL, Chang SY, William W, et al. Ethical and regulatory challenges of large language models in medicine[J]. Lancet Digit Health, 2024, 6(6): e428-e432.
[21] Belle V, Papantonis I. Principles and practice of explainable machine learning[J]. Front Big Data, 2021, 4: 688969. doi: 10.3389/fdata.2021.688969
[22] 杨军洁, 周程. 医学人工智能的算法黑箱问题: 伦理挑战与化解进路[J]. 科学通报, 2023, 68(13): 1604-1610. YANG Junjie, ZHOU Cheng. Algorithmic black-box problem in medical artificial intelligence: ethical challenges and solution approach[J]. Chinese Science Bulletin, 2023, 68(13): 1604-1610.
[23] Wadden JJ. Defining the undefinable: the black box problem in healthcare artificial intelligence[J]. J Med Ethics, 2021: medethics-medet2021-107529. doi: 10.1136/medethics-2021-107529
[24] Welchowski T, Maloney KO, Mitchell R, et al. Techniques to improve ecological interpretability of black-box machine learning models[J]. J Agric Biol Environ Stat, 2022, 27(1): 175-197.
[25] 肖丽. 人工智能时代的营销伦理问题及其决策模型的重构[D]. 广州: 暨南大学, 2019.
[26] 黄键, 张平, 王志刚, 等. 大模型时代的数据安全与伦理问题研究[J]. 信息安全与通信保密, 2025(3): 46-53. HUANG Jian, ZHANG Ping, WANG Zhigang, et al. Research on data security and ethical issues in the era of large models[J]. Information Security and Communications Privacy, 2025(3): 46-53.
[27] Alom MR, Al Farid F, Rahaman MA, et al. An explainable AI-driven deep neural network for accurate breast cancer detection from histopathological and ultrasound images[J]. Sci Rep, 2025, 15: 17531. doi: 10.1038/s41598-025-97718-5
[1] WU Qiqi, CHENG Miaomiao, XIAO Xiaoyan. Multimodal models in the field of kidney disease [J]. Journal of Shandong University (Health Sciences), 2025, 63(10): 117-124.
[2] LIANG Bowen, LU Qingsheng. Advances in robotic-assisted endovascular aortic repair [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 61-65.
[3] ZHANG Jinghui, WANG Juan, ZHAO Yujie, DUAN Miao, LIU Yiran, LIN Minjuan, QIAO Xu, LI Zhen, ZUO Xiuli. Construction of a machine learning-based tongue diagnosis model for gastrointestinal diseases [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 38-47.
[4] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[5] Lin HUANG,Zhen CHE,Ming LI,Yuxi LI,Qing NING. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[6] Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[7] Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6.
[8] Xiao LI,Zhiyuan SUN,Longjiang ZHANG. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20.
[9] Ziliang XU,Minwen ZHENG. Innovation and challenge of imaging artificial intelligence in medical field [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 7-12, 20.
[10] Pei NIE,Ximing WANG. Research progress in the application of artificial intelligence in myocardial imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 1-6.
[11] Guyue ZHAO,Jin SHANG,Yang HOU. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35.
[12] YANG Lizhi, SUN Xiao, SHANG Mengmeng, GUO Lu, SHI Dandan, LI Jie. C-TIRADS-based nomogram for malignant risk prediction of thyroid nodules [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 64-69.
[13] WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96.
[14] Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21.
[15] Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!