山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 14-20.doi: 10.6040/j.issn.1671-7554.0.2022.0956
吴南1,2,3,4,*(),仉建国1,2,3,4,朱源棚1,2,4,陈癸霖1,2,4,陈泽夫1,2,4
Nan WU1,2,3,4,*(),Jianguo ZHANG1,2,3,4,Yuanpeng ZHU1,2,4,Guilin CHEN1,2,4,Zefu CHEN1,2,4
摘要:
脊柱畸形是一种高致畸致残性疾病,其发病年龄可覆盖全生命周期。随着计算机技术的快速发展,人工智能有了显著的进步。目前人工智能在疾病的诊疗方面有着巨大的应用潜能,也逐渐被应用于脊柱畸形的筛查、诊治、手术决策、术中操作和并发症预测等多个方面。近年来,许多研究对此方向进行了探索,提出了很多具有优秀表现和广阔应用前景的方案与模型,本文就此做一综述。
中图分类号:
1 |
Smith JS , Shaffrey CI , Bess S , et al. Recent and emerging advances in spinal deformity[J]. Neurosurgery, 2017, 80 (3s): S70- S85.
doi: 10.1093/neuros/nyw048 |
2 |
Diebo BG , Shah NV , Boachie-Adjei O , et al. Adult spinal deformity[J]. Lancet, 2019, 394 (10193): 160- 172.
doi: 10.1016/S0140-6736(19)31125-0 |
3 |
Shakil H , Iqbal ZA , Al-Ghadir AH . Scoliosis: review of types of curves, etiological theories and conservative treatment[J]. J Back Musculoskelet Rehabil, 2014, 27 (2): 111- 115.
doi: 10.3233/BMR-130438 |
4 |
Dunn J , Henrikson NB , Morrison CC , et al. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force[J]. JAMA, 2018, 319 (2): 173- 187.
doi: 10.1001/jama.2017.11669 |
5 |
Weinstein SL , Dolan LA , Cheng JC , et al. Adolescent idiopathic scoliosis[J]. Lancet, 2008, 371 (9623): 1527- 1537.
doi: 10.1016/S0140-6736(08)60658-3 |
6 | Dick S . Artificial Intelligence[J]. Harvard Data Science Review, 2019, 1 (1): 1- 3. |
7 |
Bhinder B , Gilvary C , Madhukar NS , et al. Artificial intelligence in cancer research and precision medicine[J]. Cancer Discov, 2021, 11 (4): 900- 915.
doi: 10.1158/2159-8290.CD-21-0090 |
8 |
Schmidt-Erfurth U , Sadeghipour A , Gerendas BS , et al. Artificial intelligence in Retina[J]. Prog Retin Eye Res, 2018, 67, 1- 29.
doi: 10.1016/j.preteyeres |
9 | Nensa F , Demircioglu A , Rischpler C . Artificial intelligence in nuclear medicine[J]. J Nucl Med, 2019, 60 (Suppl 2): 29- 37. |
10 |
Ramirez L , Durdle NG , Raso VJ , et al. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography[J]. IEEE Trans Inf Technol Biomed, 2006, 10 (1): 84- 91.
doi: 10.1109/TITB.2005.855526 |
11 |
Watanabe K , Aoki Y , Matsumoto M . An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from moiré images[J]. Neurospine, 2019, 16 (4): 697- 702.
doi: 10.14245/ns.1938426.213 |
12 |
Yang J , Zhang K , Fan H , et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J]. Commun Biol, 2019, 2, 390.
doi: 10.1038/s42003-019-0635-8 |
13 |
Hong A , Jaswal N , Westover L , et al. Surface topography classification trees for assessing severity and monitoring progression in adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2017, 42 (13): E781- E787.
doi: 10.1097/BRS.0000000000001971 |
14 |
Kokabu T , Kanai S , Kawakami N , et al. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection[J]. Spine J, 2021, 21 (6): 980- 987.
doi: 10.1016/j.spinee.2021.01.022 |
15 |
Greer H , Gerber S , Niethammer M , et al. Scoliosis screening and monitoring using self contained ultrasound and neural networks[J]. Proc IEEE Int Symp Biomed Imaging, 2018, 2018, 1500- 1503.
doi: 10.1109/isbi.2018.8363857 |
16 |
Kim KH , Choi WJ , Sohn MJ . Feature importance analysis for postural deformity detection system using explainable predictive modeling technique[J]. Applied Sciences, 2022, 12 (2): 925- 926.
doi: 10.3390/app12020925 |
17 |
LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539 |
18 |
Sarvamangala DR , Kulkarni RV . Convolutional neural networks in medical image understanding: a survey[J]. Evol Intell, 2022, 15 (1): 1- 22.
doi: 10.1007/s12065-020-00540-3 |
19 |
Duong L , Cheriet F , Labelle H . Automatic detection of scoliotic curves in posteroanterior radiographs[J]. IEEE Trans Biomed Eng, 2010, 57 (5): 1143- 1151.
doi: 10.1109/TBME.2009.2037214 |
20 |
Horng MH , Kuok CP , Fu MJ , et al. Cobb angle measurement of spine from X-ray images using convolutional neural network[J]. Comput Math Methods Med, 2019, 2019, 6357171.
doi: 10.1155/2019/6357171 |
21 |
Weng CH , Wang CL , Huang YJ , et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet framework[J]. J Clin Med, 2019, 8 (11): E1826.
doi: 10.3390/jcm8111826 |
22 |
Wu H , Bailey C , Rasoulinejad P , et al. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net[J]. Med Image Anal, 2018, 48, 1- 11.
doi: 10.1016/j.media.2018.05.005 |
23 |
Wang L , Xu Q , Leung S , et al. Accurate automated Cobb angles estimation using multi-view extrapolation net[J]. Med Image Anal, 2019, 58, 101542.
doi: 10.1016/j.media.2019.101542 |
24 |
Cina A , Bassani T , Panico M , et al. 2-step deep learning model for landmarks localization in spine radiographs[J]. Sci Rep, 2021, 11 (1): 9482.
doi: 10.1038/s41598-021-89102-w |
25 |
Zhang K , Xu N , Guo C , et al. MPF-net: an effective framework for automated Cobb angle estimation[J]. Med Image Anal, 2022, 75, 102277.
doi: 10.1016/j.media.2021.102277 |
26 |
Zhang T , Li Y , Cheung JPY , et al. Learning-based coronal spine alignment prediction using smartphone-acquired scoliosis radiograph images[J]. IEEE Access, 2021, 9, 38287- 38295.
doi: 10.1109/ACCESS.2021.3061090 |
27 |
Meng N , Cheung JPY , Wong KK , et al. An artificial intelligence powered platform for auto-analyses of spine alignment irrespective of image quality with prospective validation[J]. E Clinical Medicine, 2022, 43, 101252.
doi: 10.1016/j.eclinm.2021.101252 |
28 |
Gajny L , Ebrahimi S , Vergari C , et al. Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis[J]. Eur Spine J, 2019, 28 (4): 658- 664.
doi: 10.1007/s00586-018-5807-6 |
29 |
Aubert B , Vazquez C , Cresson T , et al. Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting[J]. IEEE Trans Med Imaging, 2019, 38 (12): 2796- 2806.
doi: 10.1109/TMI.2019.2914400 |
30 |
Lenke LG , Betz RR , Harms J , et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis[J]. J Bone Joint Surg Am, 2001, 83 (8): 1169- 1181.
doi: 10.2106/00004623-200108000-00006 |
31 |
Zhuang Q , Qiu G , Li Q , et al. Modified PUMC classification for adolescent idiopathic scoliosis[J]. Spine J, 2019, 19 (9): 1518- 1528.
doi: 10.1016/j.spinee.2019.03.008 |
32 |
Phan P , Mezghani N , Nault ML , et al. A decision tree can increase accuracy when assessing curve types according to Lenke classification of adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2010, 35 (10): 1054- 1059.
doi: 10.1097/BRS.0b013e3181bf280e |
33 |
Stokes IA , Sangole AP , Aubin CE . Classification of scoliosis deformity three-dimensional spinal shape by cluster analysis[J]. Spine (Phila Pa 1976), 2009, 34 (6): 584- 590.
doi: 10.1097/BRS.0b013e318190b914 |
34 |
Thong W , Parent S , Wu J , et al. Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models[J]. Eur Spine J, 2016, 25 (10): 3104- 3113.
doi: 10.1007/s00586-016-4426-3 |
35 |
Pasha S , Hassanzadeh P , Ecker M , et al. A hierarchical classification of adolescent idiopathic scoliosis: identifying the distinguishing features in 3D spinal deformities[J]. PLoS One, 2019, 14 (3): e0213406.
doi: 10.1371/journal.pone.0213406 |
36 |
He Z , Wang Y , Qin X , et al. Classification of neurofibromatosis-related dystrophic or nondystrophic scoliosis based on image features using Bilateral CNN[J]. Med Phys, 2021, 48 (4): 1571- 1583.
doi: 10.1002/mp.14719 |
37 |
Mezghani N , Phan P , Mitiche A , et al. A Kohonen neural network description of scoliosis fused regions and their corresponding Lenke classification[J]. Int J Comput Assist Radiol Surg, 2012, 7 (2): 257- 264.
doi: 10.1007/s11548-011-0667-0 |
38 |
Lafage R , Ang B , Alshabab BS , et al. Predictive model for selection of upper treated vertebra using a machine learning approach[J]. World Neurosurg, 2021, 146, e225- e232.
doi: 10.1016/j.wneu |
39 |
Ames CP , Smith JS , Pellisé F , et al. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value[J]. Spine (Phila Pa 1976), 2019, 44 (13): 915- 926.
doi: 10.1097/BRS.0000000000002974 |
40 |
Raman T , Vasquez-Montes D , Varlotta C , et al. Decision tree-based modelling for identification of predictors of blood loss and transfusion requirement after adult spinal deformity surgery[J]. Int J Spine Surg, 2020, 14 (1): 87- 95.
doi: 10.14444/7012 |
41 |
Pasha S , Flynn J . Data-driven classification of the 3D spinal curve in adolescent idiopathic scoliosis with an application in surgical outcome prediction[J]. Sci Rep, 2018, 8 (1): 16296.
doi: 10.1038/s41598-018-34261-6 |
42 | Guo XY, Xu SX, Wang YZ, et al. Prediction model of scoliosis progression bases on deep learning[C]//Cyberspace Data Intell Cyber Living Syndr Heal. Singapore: Springer, 2019: 431-440. doi: 10.1007/978-981-15-1925-3_31. |
43 |
García-Cano E , Arámbula Cosío F , Duong L , et al. Prediction of spinal curve progression in Adolescent Idiopathic Scoliosis using Random Forest regression[J]. Comput Biol Med, 2018, 103, 34- 43.
doi: 10.1016/j.compbiomed.2018.09.029 |
44 |
Pellisé F , Vila-Casademunt A , Núñez-Pereira S , et al. Surgeons' risk perception in ASD surgery: the value of objective risk assessment on decision making and patient counselling[J]. Eur Spine J, 2022, 31 (5): 1174- 1183.
doi: 10.1007/s00586-022-07166-2 |
45 |
Kantelhardt SR , Martinez R , Baerwinkel S , et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20 (6): 860- 868.
doi: 10.1007/s00586-011-1729-2 |
46 |
Gao S , Lv Z , Fang H . Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials[J]. Eur Spine J, 2018, 27 (4): 921- 930.
doi: 10.1007/s00586-017-5333-y |
47 |
Peng YN , Tsai LC , Hsu HC , et al. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials[J]. Ann Transl Med, 2020, 8 (13): 824.
doi: 10.21037/atm-20-1106 |
48 |
Lieberman IH , Kisinde S , Hesselbacher S . Robotic-assisted pedicle screw placement during spine surgery[J]. JBJS Essent Surg Tech, 2020, 10 (2): e0020.
doi: 10.2106/JBJS.ST.19.00020 |
49 |
Esfandiari H , Newell R , Anglin C , et al. A deep learning framework for segmentation and pose estimation of pedicle screw implants based on C-arm fluoroscopy[J]. Int J Comput Assist Radiol Surg, 2018, 13 (8): 1269- 1282.
doi: 10.1007/s11548-018-1776-9 |
50 |
Guiot BH , Khoo LT , Fessler RG . A minimally invasive technique for decompression of the lumbar spine[J]. Spine (Phila Pa 1976), 2002, 27 (4): 432- 438.
doi: 10.1097/00007632-200202150-00021 |
51 |
Liu G , Liu S , Zuo YZ , et al. Recent advances in technique and clinical outcomes of minimally invasive spine surgery in adult scoliosis[J]. Chin Med J (Engl), 2017, 130 (21): 2608- 2615.
doi: 10.4103/0366-6999.212688 |
52 | Shamji MF , Goldstein CL , Wang M , et al. Minimally invasive spinal surgery in the elderly: does it make sense?[J]. Neurosurgery, 2015, 77 (Suppl 4): S108- S115. |
53 |
de Bodman C , Ansorge A , Tabard A , et al. Clinical and radiological outcomes of minimally-invasive surgery for adolescent idiopathic scoliosis at a minimum two years' follow-up[J]. Bone Joint J, 2020, 102-B (4): 506- 512.
doi: 10.1302/0301-620X.102B4.BJJ-2019-0447.R1 |
54 | von Atzigen M , Liebmann F , Hoch A , et al. HoloYolo: a proof-of-concept study for marker-less surgical navigation of spinal rod implants with augmented reality and on-device machine learning[J]. Int J Med Robot, 2021, 17 (1): 1- 10. |
55 |
Luthi M , Gerig T , Jud C , et al. Gaussian process morphable models[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40 (8): 1860- 1873.
doi: 10.1109/TPAMI.2017.2739743 |
56 |
Scheer JK , Osorio JA , Smith JS , et al. Development of validated computer-based preoperative predictive model for proximal junction failure (PJF) or clinically significant PJK with 86% accuracy based on 510 ASD patients with 2-year follow-up[J]. Spine (Phila Pa 1976), 2016, 41 (22): E1328- E1335.
doi: 10.1097/BRS.0000000000001598 |
57 |
Peng L , Lan L , Xiu P , et al. Prediction of proximal junctional kyphosis after posterior scoliosis surgery with machine learning in the lenke 5 adolescent idiopathic scoliosis patient[J]. Front Bioeng Biotechnol, 2020, 8, 559387.
doi: 10.3389/fbioe.2020.559387 |
58 |
Yagi M , Fujita N , Okada E , et al. Fine-tuning the predictive model for proximal junctional failure in surgically treated patients with adult spinal deformity[J]. Spine (Phila Pa 1976), 2018, 43 (11): 767- 773.
doi: 10.1097/BRS.0000000000002415 |
59 |
Yagi M , Hosogane N , Fujita N , et al. The patient demographics, radiographic index and surgical invasiveness for mechanical failure (PRISM) model established for adult spinal deformity surgery[J]. Sci Rep, 2020, 10 (1): 9341.
doi: 10.1038/s41598-020-66353-7 |
60 |
Kim JS , Merrill RK , Arvind V , et al. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion[J]. Spine (Phila Pa 1976), 2018, 43 (12): 853- 860.
doi: 10.1097/BRS.0000000000002442 |
61 | Karhade AV , Schwab JH , Del Fiol G , et al. SMART on FHIR in spine: integrating clinical prediction models into electronic health records for precision medicine at the point of care[J]. Spine J, 2020, 21 (10): 1649- 1651. |
62 |
Park JH , Stegall PR , Roye DP , et al. Robotic spine exoskeleton (RoSE): characterizing the 3-D stiffness of the human torso in the treatment of spine deformity[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26 (5): 1026- 1035.
doi: 10.1109/TNSRE.2018.2821652 |
[1] | 王韶卿 刘毅慧 付婷婷 成金勇 刘强. 肝癌31磷磁共振波谱数据的分类[J]. 山东大学学报(医学版), 2209, 47(6): 42-46. |
[2] | 刘新宇,李冬来,赵文龙,王政,李超,王连雷,原所茂,田永昊. 机器人/导航辅助下椎弓根螺钉植入在脊柱畸形矫正中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 21-28. |
[3] | 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133. |
[4] | 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45. |
[5] | 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13. |
[6] | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6. |
[7] | 巨艳丽,王丽华,成芳,黄凤艳,陈学禹,贾红英. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报 (医学版), 2023, 61(1): 94-99. |
[8] | 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报 (医学版), 2022, 60(4): 10-16. |
[9] | 冯一平,孙大鹏,王显军,纪伊曼,刘云霞. DLNM和LSTM神经网络对临沂市手足口病发病的预测效果比较[J]. 山东大学学报 (医学版), 2022, 60(2): 96-101. |
[10] | 姜震,孙静,邹雯,王唱唱,高琦. 基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究[J]. 山东大学学报 (医学版), 2022, 60(1): 101-108. |
[11] | 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96. |
[12] | 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49. |
[13] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[14] | 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87. |
[15] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
|