您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 89-96.doi: 10.6040/j.issn.1671-7554.0.2021.1017

• 专家综述 • 上一篇    下一篇

从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考

王琳琳1,孙玉萍2   

  1. 山东省肿瘤医院 1.放疗科;2. Ⅰ期临床研究中心, 山东 济南 250117
  • 发布日期:2021-10-15
  • 通讯作者: 孙玉萍. E-mail:13370582181@163.com
  • 基金资助:
    山东省自然科学基金(ZR2019LZL012)

From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment

WANG Linlin1, SUN Yuping2   

  1. 1. Department of Radiation Oncology;
    2. Department of Phase I Clinical Trial Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong, China
  • Published:2021-10-15

摘要: 在癌症的精准诊疗中,以深度学习为代表的人工智能技术日益展现出巨大的潜力。在医学影像、病理学等领域,人工智能技术的出现不仅有望大大降低相关科室人员的工作量,通过对影像、病理学图片进行定量描述,人工智能技术也可进一步挖掘出医学数据中潜在的复杂模式。综述首先对目前流行的人工智能技术进行简单的介绍。其次,重点探讨了深度学习技术如何最先影响到癌症影像诊断学的。随后,介绍了人工智能技术在癌症病理学、基因组学、免疫治疗等领域的最新进展。最后,进一步探讨了癌症领域人工智能临床落地过程中存在的困难,并提出一些可能的解决思路,以期为未来的研究提供参考。

关键词: 人工智能, 深度学习, 精准医疗, 医学影像, 肿瘤

Abstract: The artificial intelligence(AI)has shown increasingly potential powers in the precision medicine of cancer treatment. AI can not only decrease routine workload of doctors in departments of radiology and pathology, but also delve the potential complicate patterns hidden in medical data through quantifying the radiologic and pathological images. In this review, we will first summarize the cutting-edge AI technology and then focus on the influence of deep learning, the most popular AI technology, on cancer radiology. Next, we will introduce the new advance of AI tech applied in the cancer pathology, genetics and immunology. Finally, we will discuss the difficulties of clinical application of AI and try to bring some possible solutions for these difficulties.

Key words: Artificial intelligence, Deep learning, Precision medicine, Radiology, Cancer

中图分类号: 

  • R730.5
[1] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533.
[2] Moravcík M, Schmid M, Burch N, et al. DeepStack: expert-level artificial intelligence in heads-up no-limit poker [J]. Science, 2017, 356(6337): 508-513.
[3] Xiong W, Droppo J, Huang X, et al. Achieving human parity in conversational speech recognition [EB/OL].(2017-02-17)[2021-05-10]. https://arxiv.org/abs/1610.05256.
[4] Pendleton SD, Andersen H, Du X, et al. Perception, planning, control, and coordination for autonomous vehicles [J]. Machines, 2017, 5(1): 6.
[5] Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search [J]. Nature, 2016, 529(7587): 484-489.
[6] Grace K, Salvatier J, Dafoe A, et al. When will AI exceed human performance? evidence from AI experts [EB/OL].(2018-07-31)[2021-05-10]. https://arxiv.org/abs/1705.08807.
[7] Rusk N. Deep learning [J]. Nature Methods, 2016, 13(1): 35-35.
[8] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118.
[9] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410.
[10] Castellino RA. Computer aided detection(CAD): an overview [J]. Cancer Imaging, 2005, 5: 17-19. doi:10.1102/1470-7330.2005.0018.
[11] Cole EB, Zhang Z, Marques HS, et al. Impact of computer-aided detection systems on radiologist accuracy with digital mammography [J]. AJR Am J Roentgenol, 2014, 203(4): 909-916.
[12] Lehman CD, Wellman RD, Buist DS, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection [J]. JAMA Intern Med, 2015, 175(11): 1828-1837.
[13] Huang X, Shan J, Vaidya V. Lung nodule detection in CT using 3D convolutional neural networks[C] //2017 IEEE 14th International Symposium on Biomedical Imaging(ISBI 2017). Piscataway, NJ: IEEE, 2017: 379-383.
[14] Armato SG, Petrick NA, Tsehay YK, et al. SPIE Proceedings [SPIE SPIE Medical Imaging - Orlando, Florida, United States(Saturday 11 February 2017)] Medical Imaging 2017: Computer-Aided Diagnosis - Convolutional neural network based deep-learning architecture for prostate cancer detection on multi [J]. onAcademic, 2017, 10134: 1013405. doi: 10.1117/12.2254423.
[15] Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions [J]. Med Image Anal, 2017, 35: 303-312. doi:10.1016/j.media.2016.07.007.
[16] Champaign JL, Cederbom GJ. Advances in breast cancer detection with screening mammography [J]. Ochsner J, 2000, 2(1): 33-35.
[17] Shiraishi J, Li Q, Appelbaum D, et al. Computer-aided diagnosis and artificial intelligence in clinical imaging [J]. Semin Nucl Med, 2011, 41(6): 449-462.
[18] Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans [J]. Sci Rep, 2016, 6: 24454. doi:10.1038/srep24454.
[19] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651. doi:10.1109/TPAMI.2016.2572683.
[20] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Switzerland: Springer International Publishing, 2015.
[21] Moeskops P, Wolterink JM, van der Velden BHM, et al. Deep learning for multi-task medical image segmentation in multiple modalities [C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 478-486.
[22] Jaffe CC. Measures of response: RECIST, WHO, and new alternatives [J]. J Clin Oncol, 2006, 24(20): 3245-3251.
[23] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210.
[24] Mobadersany P, Yousefi S, Amgad M, et al. Content summaries of selected best papers for the 2019 IMIA yearbook, section bioinformatics and translational informatics [J]. Proc Natl Acad Sci USA, 2018, 115(13): E2970-E2979.
[25] Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210.
[26] Zou J, Huss M, Abid A, et al. A primer on deep learning in genomics [J]. Nat Genet, 2019, 51(1): 12-18.
[27] F Stephen Hodi, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma [J]. N Engl J Med, 2010, 363(8): 711-723.
[28] Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer [J]. N Engl J Med, 2015, 372(21): 2018-2028.
[29] Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer [J]. N Engl J Med, 2015, 373(17): 1627-1639.
[30] Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck [J]. N Engl J Med, 2016, 375(19): 1856-1867.
[31] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade [J]. Science, 2017, 357(6349): 409-413.
[32] Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma [J]. N Engl J Med, 2015, 373(19): 1803-1813.
[33] Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer [J]. N Engl J Med, 2015, 373(2): 123-135.
[34] Mehra R, Seiwert TY, Gupta S, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012 [J]. Br J Cancer, 2018, 119(2): 153-159.
[35] Hamanishi J, Mandai M, Ikeda T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer [J]. J Clin Oncol, 2015, 33(34): 4015-4022.
[36] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma [J]. N Engl J Med, 2015, 373(1): 23-34.
[37] Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study [J]. Lancet Oncol, 2016, 17(11): 1497-1508.
[38] Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy [J]. Nat Rev Cancer, 2016, 16(5): 275-287.
[39] Sunshine J, Taube JM. PD-1/PD-L1 inhibitors[J]. Curr Opin Pharmacol, 2015, 23: 32-38. doi:10.1016/j.coph.2015.05.011.
[40] Xie F, Zhang J, Wang J, et al. Multifactorial deep learning reveals Pan-cancer genomic tumor clusters with distinct immunogenomic landscape and response to immunotherapy [J]. Clin Cancer Res, 2020, 26(12): 2908-2920.
[41] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
[42] Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development [J]. Nat Rev Drug Discov, 2019, 18(6): 463-477.
[43] Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology [J]. Nat Rev Clin Oncol, 2019, 16(11): 703-715.
[44] Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies [J]. BMJ, 2020, 368: m689. doi:10.1136/bmj.m689.
[45] Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis [J]. Lancet Digital Health, 2019, 1(6): e271-e297.
[46] Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information [J]. Ann Intern Med, 1999, 130(6): 515-524.
[47] Subbaswamy A, Saria S. From development to deployment: dataset shift, causality, and shift-stable models in health AI [J]. Biostatistics, 2020, 21(2): 345-352.
[48] Zech JR, Badgeley MA, Liu M. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study [J]. PLoS Met, 2018, 15(11): e1002683.
[49] Winkler JK, Fink C, Toberer F, et al. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition [J]. JAMA dermatology, 2019, 155(10): 1135-1141.
[50] Narla A, Kuprel B, Sarin K, et al. Automated classification of skin lesions: from pixels to practice [J]. J Invest Dermatol, 2018, 138(10): 2108-2110.
[51] Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis(TRIPOD): explanation and elaboration [J]. Ann Intern Med, 2015, 162(1): W1-73.
[52] Ioannidis JPA, Khoury MJ. Improving validation practices in “omics” research [J]. Science, 2011, 334(6060): 1230-1232.
[53] Obermeyer Z, Emanuel EJ. Predicting the future- big data, machine learning, and clinical medicine [J]. N Engl J Med, 2016, 375(13): 1216-1219.
[54] Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis [J]. NPJ Digit Med, 2018, 1: 40. doi:10.1038/s41746-018-0048-y.
[55] Kawaguchi K, Kaelbling LP, Bengio Y. Generalization in deep learning[EB/OL].(2020-07-27)[2021-05-12]. https://arxiv.org/abs/1710.05468.
[56] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[57] Pfeifer R, Schreter Z, Fogelman-Soulié F,et al. Connectionism in perspective [M]. Amsterdam: Elsevier, 1989.
[58] Pan SJ, Yang Q. A survey on transfer learning[J]. Ieee T Knowl Data En, 2009, 22(10): 1345-1359.
[59] Weiss K, Khoshgoftaar TM, Wang DD. A survey of transfer learning [J]. J Big Data, 2016, 3(1):1-40.
[60] Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database [C]. IEEE Conf Comput Vis Pattern Recog Piscataway, NJ: Ieee, 2009: 248-255.
[61] Shankar S, Halpern Y, Breck E, et al. No classification without representation: assessing geodiversity issues in open data sets for the developing world [EB/OL].(2017-11-22)[2021-05-13]. https://arxiv.org/abs/1711.08536.
[62] Geirhos R, Rubisch P, Michaelis C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness [EB/OL].(2019-01-14)[2021-05-13]. https://arxiv.org/abs/1811.12231.
[63] Sun C, Shrivastava A, Singh S, et al. Revisiting unreasonable effectiveness of data in deep learning era [EB/OL].(2017-08-04)[2021-05-13]. https://arxiv.org/abs/1707.02968.
[64] Simard P, Victorri B, LeCun Y, et al. Tangent prop-a formalism for specifying selected invariances in an adaptive network [C]. NIPS, 1991, 91: 895-903.
[65] de Andrade A. Best practices for convolutional neural networks applied to object recognition in images [EB/OL].(2019-10-29)[2021-05-13]. https://arxiv.org/abs/1910.13029.
[66] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning [J]. J Big Data, 2019, 6(1): 1-48.
[67] Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation [J]. IEEE Trans Med Imaging, 2016, 35(5): 1170-1181.
[68] Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks [J]. Radiology, 2017, 284(2): 574-582.
[69] Zeshan, Hussain, Francisco, et al. Differential data augmentation techniques for medical imaging classification tasks [J]. Amia Annu Symp Proc, 2018, 2017: 979.
[70] Sajjad M, Khan S, Muhammad K, et al. Multi-grade brain tumor classification using deep CNN with extensive data augmentation [J]. J Comput Sci, 2019, 30: 174-182. doi:10.1016/j.jocs.2018.12.003.
[71] Stacke K, Eilertsen G, Unger J, et al. Measuring domain shift for deep learning in histopathology [J]. IEEE J Biomed Health, 2020, 25(2): 325-336.
[72] ellez D, Litjens G, Bándi P, et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology [J]. Med Image Anal, 2019, 58: 101544. doi:10.1016/j.media.2019.101544.
[73] van den Hout WB. The area under an ROC curve with limited information [J]. Med Decis Making, 2003, 23(2): 160-166.
[74] Fawcett T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8): 861-874.
[75] Harrell FE, Califf RM, Pryor DB, et al. Evaluating the yield of medical tests [J]. Jama, 1982, 247(18): 2543-2546.
[76] Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models [J]. Global Ecol Biogeogr, 2008, 17(2): 145-151.
[77] Ioannidis JPA. What have we(not)learnt from millions of scientific papers with P values? [J]. Am Stat, 2019, 73(Suppl1): 20-25.
[78] Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy [J]. Lancet, 2005, 365(9458): 488-492.
[79] Miller, R.G. Simultaneous statistical inference [M]. 2nd edition. Cham: Springer, 1981.
[80] Hochberg Y, Tamhane AC. Multiple comparison procedures [M]. New Jersey: John Wiley & Sons, Inc, 1987.
[1] 王伟 王沂峰 张岭梅 林琼燕 黄菊. 人卵巢癌OVCAR3细胞系中侧群细胞的分离及其成瘤性、侵袭性的实验研究[J]. 山东大学学报(医学版), 2209, 47(6): 8-11.
[2] 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61.
[3] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[4] 黄方 康瑞 吴春林. VEGFC、NF-κBp65及Survivin在鼻咽癌中的表达及临床意义[J]. 山东大学学报(医学版), 2209, 47(6): 83-.
[5] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[6] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[7] 孙文雄,吴日超,郑贤静,李丽, 张友忠. 宫颈血管周上皮样细胞肿瘤1例[J]. 山东大学学报 (医学版), 2022, 60(9): 125-128.
[8] 吴瑞芳,李长忠. 女性生育力保护的现状与进展[J]. 山东大学学报 (医学版), 2022, 60(9): 1-7.
[9] 张艺馨,赵玉立,封丽. 超声特征及术前CA-125联合对51例卵巢交界性及Ⅰ期恶性肿瘤的鉴别诊断[J]. 山东大学学报 (医学版), 2022, 60(7): 104-109.
[10] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[11] 宋钰峰,宁豪,姚志刚,吴海虎,刘非凡,吕家驹. 肾上腺海绵状血管瘤临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(2): 37-42.
[12] 程传龙,杨淑霞,佘凯丽,房启迪,韩闯,刘盈,崔峰,李秀君. 淄博市2018年恶性肿瘤的流行特征及影响因素[J]. 山东大学学报 (医学版), 2022, 60(2): 102-108.
[13] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[14] 许英杰,吕洪涛,荣风年. 妊娠期外阴血管肌纤维母细胞瘤1例[J]. 山东大学学报 (医学版), 2022, 60(11): 130-132.
[15] 毕文浩,俞能旺,蒋立城. 肾脏原发性尤文肉瘤1例[J]. 山东大学学报 (医学版), 2022, 60(10): 117-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[2] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[3] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[4] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .
[5] 滕学仁,赵永生,胡光亮,周伦,李建民 . 两种方法保存同种异体髌腱移植重建膝关节交叉韧带的光镜电镜观察[J]. 山东大学学报(医学版), 2008, 46(10): 945 -950 .
[6] 袁吴敏,赵志伦,王洁贞 . 吸烟和饮酒与颅内肿瘤关系的Meta分析[J]. 山东大学学报(医学版), 2006, 44(11): 1146 -1149 .
[7] 赵鹏,毕万利,李宁 . 螺旋CT后处理技术对青少年先天性脊柱畸形的诊断价值[J]. 山东大学学报(医学版), 2007, 45(8): 825 -829 .
[8] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .
[9] . Graves病131治疗后1年内早发甲减影响因素分析[J]. 山东大学学报(医学版), 2009, 47(9): 5 -6 .
[10] 牛瑞,刘波,邵明举,王伟 . 非小细胞肺癌区域淋巴结中肺组织特异性基因的表达与预后的关系[J]. 山东大学学报(医学版), 2007, 45(9): 884 -885 .