山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 7-13.doi: 10.6040/j.issn.1671-7554.0.2022.1331
刘亚军1,2,郎昭1,2,郭安忆1,2,刘文勇3,4,*()
Yajun LIU1,2,Zhao LANG1,2,Anyi GUO1,2,Wenyong LIU3,4,*()
摘要:
体外冲击波治疗以其安全无创的临床优势在骨科得到了广泛应用,但传统治疗手段普遍存在的主观经验决策和手动长时操作等问题限制了该方法的推广和进一步发展。智能技术已经开始进入骨科冲击波治疗领域,并发展迅速。本文总结了计算机导航、机器学习和机器人三类智能技术在骨科冲击波治疗中的研究现状及应用特点,表明:现阶段,计算机导航可以有效辅助医生完成冲击波探头的准确定位,机器学习方法能够辅助实现冲击波治疗能量参数的自动预测;机器人已经表现出了显著的潜在临床效能,尤其是能够大幅降低医师操作强度;三类技术分别从“眼”“脑”“手”的角度,为提升骨科冲击波治疗智能化水平提供全面支持。在此基础上,本文从临床治疗机制与量效关系、方案规划智能化与临床适宜性、治疗操作自动化与机器人辅助等方面,展望了未来发展趋势。
中图分类号:
1 |
中华医学会物理医学与康复学分会, 肌肉骨骼疾病体外冲击波治疗专家共识组. 肌肉骨骼疾病体外冲击波治疗专家共识[J]. 中华物理医学与康复杂志, 2019, 41 (7): 481- 487.
doi: 10.3760/cma.j.issn.0254-1424.2019.07.001 |
2 | Chaussy C , Brendel W , Schmiedt E . Extracorporeally induced destruction of kidney stones by shock waves[J]. Lancet, 1980, 2 (8207): 1265- 1268. |
3 |
Park SH , Park JB , Weinstein JN , et al. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopedics. I. Foundations and overview[J]. J Appl Biomater, 1991, 2 (2): 115- 126.
doi: 10.1002/jab.770020207 |
4 | Fan H. The usage of extracorporeal shockwave therapy in rehabilitation medicine[C]// 2020 4th International Conference on Computational Biology and Bioinformatics, December 27-29, 2020, Bali Island, Indonesia: ICCBB'20, 42-45. doi: 10.1145/3449258.3449266. |
5 |
Han XG , Tian W . Artificial intelligence in orthopedic surgery: current state and future perspective[J]. Chin Med J (Engl), 2019, 132 (21): 2521- 2523.
doi: 10.1097/CM9.0000000000000479 |
6 |
Schatz KD , Nehrer S , Dorotka R , et al. Computer-navigated high-energy shock wave therapy following failed distraction treatment of congenital tibial pseudarthrosis[J]. Orthopade, 2002, 31 (7): 663- 666.
doi: 10.1007/s00132-002-0327-8 |
7 |
綦惠, 杰永生, 郑蕊, 等. 放散式体外冲击波对软骨细胞生物学行为的影响[J]. 北京生物医学工程, 2020, 39 (3): 278- 284.
doi: 10.3969/j.issn.1002-3208.2020.03.009. |
QI Hui , JIE Yongsheng , ZHENG Rui , et al. Effect of radial extracorporeal shock wave on the biological behaviors of chondrocytes[J]. Beijing Biomedical Engineering, 2020, 39 (3): 278- 284.
doi: 10.3969/j.issn.1002-3208.2020.03.009. |
|
8 |
Li B , Qang R , Huang X , et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model[J]. Front Endocrinol (Lausanne), 2021, 12, 627718.
doi: 10.3389/fendo.2021.627718 |
9 |
Kobayashi M , Chijimatsu R , Yoshikawa H , et al. Extracorporeal shock wave therapy accelerates endochondral ossification and fracture healing in a rat femur delayed-union model[J]. Biochem Biophys Res Commun, 2020, 530 (4): 632- 637.
doi: 10.1016/j.bbrc.2020.07.084 |
10 | 宋轲, 刘寰, 武文亮, 等. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54 (6): 1- 6. |
SONG Ke , LIU Huan , WU Wenliang , et al. Combination of bone marrow mesenchymal stem cells, platelet gel and extrocorporeal shock wave on bone regeneration[J]. Journal of Shandong University (Health Sciences), 2016, 54 (6): 1- 6. | |
11 | Chou WY , Cheng JH , Wang CJ , et al. Shockwave targeting on subchondral bone is more suitable than articular cartilage for knee osteoarthritis[J]. Int J Med Sci, 2019, 12 (1): 156- 166. |
12 |
Liu Y , Chen X , Guo A , et al. Quantitative assessments of mechanical responses upon radial extracorporeal shock wave therapy[J]. Adv Sci (Weinh), 2018, 5 (3): 1700797.
doi: 10.1002/advs.201700797 |
13 |
Alkhamaali ZK , Crocombe AD , Solan MC , et al. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis[J]. Comput Methods Biomech Biomed Engin, 2016, 19 (10): 1069- 1078.
doi: 10.1080/10255842.2015.1096348 |
14 | Eremina G, Smolin A. Shock-wave impact on the knee joint affected with osteoarthritis and after arthroplasty[EB/OL]. (2022-05-31)[2022-07-15]. https://doi.org/10.1016/j.dt.2022.06.002. |
15 |
Chen Y , Lyu K , Lu J , et al. Biological response of extracorporeal shock wave therapy to tendinopathy in vivo (review)[J]. Review Front Vet Sci, 2022, 9, 851894.
doi: 10.3389/fvets.2022.851894 |
16 |
Ke MJ , Chen LC , Chou YC , et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: a prospective, randomized, single-blind, placebo-controlled trial[J]. Sci Rep, 2016, 6, 38344.
doi: 10.1038/srep38344 |
17 |
Mittermayr R , Haffner N , Feichtinger X , et al. The role of shockwaves in the enhancement of bone repair-from basic principles to clinical application[J]. Injury, 2021, 52 (Suppl 2): S84- S90.
doi: 10.1016/j.injury.2021.02.081 |
18 | Schmitz C , Csaszar NB , Milz S , et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database[J]. Br Med Bull, 2015, 116 (1): 115- 138. |
19 |
Zhang YF , Liu Y , Chou SW , et al. Dose-related effects of radial extracorporeal shock wave therapy for knee osteoarthritis: a randomized controlled trial[J]. J Rehabil Med, 2021, 53 (1): jrm00144.
doi: 10.2340//6501977-2782 |
20 |
Fiani B , Davati C , Griepp DW , et al. Enhanced spinal therapy: extracorporeal shock wave therapy for the spine[J]. Cureus, 2020, 12 (10): e11200.
doi: 10.7759/cureus.11200 |
21 |
张继英, 侯宇, 薛涛, 等. 不同频率冲击波促进兔管状骨成骨的实验研究[J]. 中国运动医学杂志, 2010, 29 (1): 51- 55.
doi: 10.16038/j.1000-6710.2010.01.008 |
ZHANG Jiying , HOU Yu , XUE Tao , et al. An experimental pathological study of different frequency extracorporeal shock wave induced tibia osteogenesis in rabbits[J]. Chinese Journal of Sports Medicine, 2010, 29 (1): 51- 55.
doi: 10.16038/j.1000-6710.2010.01.008 |
|
22 |
Zhang X , Yan X , Wang C , et al. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy[J]. J Surg Res, 2014, 186 (1): 484- 492.
doi: 10.1016/j.jss.2013.08.013 |
23 |
Zheng G , Nolte LP . Computer-assisted orthopedic surgery: current state and future perspective[J]. Front Surg, 2015, 2, 66.
doi: 10.3389/fsurg.2015.00066 |
24 |
Sabeti-Aschraf M , Dorotka R , Goll A , et al. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff[J]. Am J Sports Med, 2005, 33 (9): 1365- 1368.
doi: 10.1177/0363546504273052 |
25 |
Sabeti M , Dorotka R , Goll A , et al. A comparison of two different treatments with navigated extracorporeal shock-wave therapy for calcifying tendinitis-a randomized controlled trial[J]. Wien Klin Wochenschr, 2007, 119 (3-4): 124- 128.
doi: 10.1007/s00508-006-0723-x |
26 |
Hagelauer U , Russo S , Gigliotti S , et al. Interactive navigation system for shock wave applications[J]. Comput Aided Surg, 2001, 6 (1): 22- 31.
doi: 10.3109/10929080109145990 |
27 |
Farr S , Sevelda F , Mader P , et al. Extracorporeal shockwave therapy in calcifying tendinitis of the shoulder[J]. Randomized Controlled Trial Knee Surg Sports Traumatol Arthrosc, 2011, 19 (12): 2085- 2089.
doi: 10.1007/s00167-011-1479-z |
28 |
He W , Guo A , Wang S , et al. Should nonunion femoral neck fractures in children be treated with extracorporeal shockwave therapy under navigation guidance?[J]. Interdisciplinary Neurosurgery, 2020, 20, 100629.
doi: 10.1016/j.inat.2020.100629 |
29 |
Notarnicola A , Maccagnano G , Tafuri S , et al. Prognostic factors of extracorporeal shock wave therapy for tendinopathies[J]. Musculoskelet Surg, 2016, 100 (1): 53- 61.
doi: 10.1007/s12306-015-0375-y |
30 |
Salem H , Soria D , Lund JN , et al. A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology[J]. BMC Med Inform Decis Mak, 2021, 21 (1): 223.
doi: 10.1186/s12911-021-01585-9 |
31 | Goyal NK , Kumar A , Trivedi S , et al. A comparative study of artificial neural network and multivariate regression analysis to analyze optimum renal stone fragmentation by extracorporeal shock wave lithotripsy[J]. Saudi J Kidney Dis Transpl, 2010, 21 (6): 1073- 1080. |
32 |
Mannil M , von Spiczak J , Hermanns T , et al. Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones[J]. J Urol, 2018, 200 (4): 829- 836.
doi: 10.1016/j.juro.2018.04.059 |
33 | Xu ZH , Zhou S , Jia CP , et al. Prediction of proximal ureteral stones clearance after shock wave lithotripsy using an artificial neural network[J]. Urol J, 2021, 18 (5): 491- 496. |
34 |
Yang SW , Hyon YK , Na HS , et al. Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy[J]. BMC Urol, 2020, 20 (1): 88.
doi: 10.1186/s12894-020-00662-X |
35 |
Michaels EK , Niederberger CS , Golden RM , et al. Use of a neural network to predict stone growth after shock wave lithotripsy[J]. Urology, 1998, 51 (2): 335- 338.
doi: 10.1016/S0090-4295(97)00611-0 |
36 |
蒋杰宏, 姚聪, 陈健芬, 等. 人工神经网络及Logistic回归模型对预测体外冲击波治疗上尿路结石的疗效分析[J]. 国际医药卫生导报, 2016, 22 (12): 1670- 1673.
doi: 10.3760/cma.j.issn.1007-1245.2016.12.002 |
JIANG Jiehong , YAO Cong , CHEN Jianfen , et al. Role of artificial neural network and logistic regression model in predicting effect of extracorporeal shock wave for upper urinary tract calculi[J]. International Medicine and Health Guidance News, 2016, 22 (12): 1670- 1673.
doi: 10.3760/cma.j.issn.1007-1245.2016.12.002 |
|
37 |
Muller S , Abildsnes H , Ostvik A , et al. Can a dinosaur think? Implementation of artificial intelligence in extracorporeal shock wave lithotripsy[J]. Eur Urol Open Sci, 2021, 27, 33- 42.
doi: 10.1016/j.euros.2021.02.007 |
38 |
Chen ZP , Zeng DD , Seltzer RGN , et al. Automated generation of personalized shock wave lithotripsy protocols: treatment planning using deep learning[J]. JMIR Med Inform, 2021, 9 (5): e24721.
doi: 10.2196/24721 |
39 |
Yin M , Chen N , Huang Q , et al. New and accurate predictive model for the efficacy of extracorporeal shock wave therapy in managing patients with chronic plantar fasciitis[J]. Arch Phys Med Rehabil, 2017, 98 (12): 2371- 2377.
doi: 10.1016/j.apmr.2017.05.016 |
40 |
Yin M , Ma J , Xu J , et al. Use of artificial neural networks to identify the predictive factors of extracorporeal shock wave therapy treating patients with chronic plantar fasciitis[J]. Sci Rep, 2019, 9 (1): 4207.
doi: 10.1038/s41598-019s-39026-3 |
41 | Wang ZY, Li CW, Guo AY, et al. Influences of predictive factors on treatment effect of delayed union with radial extracorporeal shock wave therapy[C] // 2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 20 August 2022, Beijing: IEEE, 234-239. doi: 10.1109/WRCSARA57040.2022.9903993. |
42 |
Y in , M C , Yan YJ , Tong ZY , et al. Development and validation of a novel scoring system for severity of plantar fasciitis[J]. Orthop Surg, 2020, 12 (6): 1882- 1889.
doi: 10.1111/os.12827 |
43 | 刘文勇, 胡蕊燕, 王再跃, 等. 脊柱手术机器人研究进展及趋势分析[J]. 骨科临床与研究杂志, 2020, 5 (3): 185- 189. |
44 |
Pu YR , Manousakas I , Liang SM , et al. Design of the dual stone locating system on an extracorporeal shock wave lithotriptor[J]. Sensors, 2013, 13 (1): 1319- 1328.
doi: 10.3390/s130101319 |
45 |
Rassweiler J , Rieker P , Rassweiler-Seyfried MC . Extracorporeal shock-wave lithotripsy: is it still valid in the era of robotic endourology? Can it be more efficient?[J]. Curr Opin Urol, 2020, 30 (2): 120- 129.
doi: 10.1097/MOU.0000000000000732 |
46 | 鲁守银, 李臣. 中医按摩机器人关键技术研究进展[J]. 山东建筑大学学报, 2017, 32 (1): 60- 68. |
LU Shouyin , LI Chen . Research progress of key technology of Chinese medical massage robot[J]. Journal of Shandong Jianzhu University, 2017, 32 (1): 60- 68. | |
47 |
Zhai J , Zeng X , Su Z . An intelligent control system for robot massaging with uncertain skin characteristics[J]. Industrial Robot, 2022, 49 (4): 634- 644.
doi: 10.1108/IR-11-2021-0266 |
48 | 魏江艳, 付渊博, 刘璐, 等. 智能针灸机器人的关键技术研究进展[J]. 中华中医药杂志, 2021, 36 (2): 979- 982. |
WEI Jiangyan , FU Yuanbo , LIU Lu , et al. Research progress on key technologies of intelligent acupuncture robot[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36 (2): 979- 982. | |
49 |
Xu T , Xia Y . Guidance for acupuncture robot with potentially utilizing medical robotic technologies[J]. Evid Based Complement Alternat Med, 2021, 2021, 8883598.
doi: 10.1155/2021/8883598 |
50 | Nature Research Custom, Beijing Jishuitan Hospital. A pioneer in medical robotics[EB/OL]. (2020-06-24)[2022-07-15]. https://www.nature.com/articles/d42473-020-00259-w. |
[1] | 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20. |
[2] | 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45. |
[3] | 巨艳丽,王丽华,成芳,黄凤艳,陈学禹,贾红英. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报 (医学版), 2023, 61(1): 94-99. |
[4] | 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报 (医学版), 2022, 60(4): 10-16. |
[5] | 姜震,孙静,邹雯,王唱唱,高琦. 基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究[J]. 山东大学学报 (医学版), 2022, 60(1): 101-108. |
[6] | 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49. |
[7] | 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66. |
[8] | 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87. |
[9] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[10] | 赵志凤. 舒适护理在骨科患者恢复期的应用[J]. 山东大学学报(医学版), 2014, 52(Z2): 174-174. |
[11] | 王志红, 谭思敏, 乐汉娥, 谢卫红, 芦敏慧, 刘文杰, 胡晓艳, 朱玉梅. 骨科无痛病房模式实施前后 护理人员的培训效果及患者满意度调查[J]. 山东大学学报(医学版), 2014, 52(Z2): 163-164. |
[12] | 付红英, 李克群, 宋振林, 岳敏. 损伤控制骨科在创伤骨科中的应用探讨[J]. 山东大学学报(医学版), 2014, 52(S2): 18-18. |
[13] | 王金广1,王莹2. 肩关节脱位并肘关节退变屈曲畸形手法复位1例[J]. 山东大学学报(医学版), 2013, 51(3): 111-112. |
[14] | 李旭,秦东京,曹新山,姜兴岳,张迪,王静. 无骨折脱位型颈脊髓损伤DTI征象与JOA评分的相关性[J]. 山东大学学报(医学版), 2013, 51(1): 83-87. |
[15] | 左灿辉,王鲁博,许世宏,董金磊,周东生. 计算机导航辅助下经关节突寰枢关节螺钉治疗齿状突骨折的临床研究[J]. 山东大学学报(医学版), 2012, 50(12): 103-. |
|