您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1671-7554.0.2022.0902

• 专家综述 •    下一篇

计算机视觉与腰椎退行性疾病

冯世庆1,2,*()   

  1. 1. 山东大学第二医院脊柱外科,山东 济南 250033
    2. 山东大学齐鲁医院骨科,山东 济南 250012
  • 收稿日期:2022-07-29 出版日期:2023-03-10 发布日期:2023-03-24
  • 通讯作者: 冯世庆 E-mail:sqfeng@tmu.edu.cn
  • 作者简介:冯世庆,教授,主任医师,博士研究生导师, 山东大学第二医院院长,山东大学齐鲁医院骨科主任,国家脊髓损伤国际科技合作基地主任,山东大学骨科医学研究中心主任,天津市脊柱脊髓重点实验室主任,天津市脊髓损伤国际联合研究中心主任。教育部长江学者特聘教授,入选中组部万人计划领军人才、国家人事部新世纪百千万人才工程国家级人选、教育部新世纪优秀人才支持计划、国家卫健委有突贡贡献中青年专家、泰山学者攀登计划专家、天津市“131”第一层次人才。担任第十届国际神经修复学会(IANR)主席,山东省医学会副会长,中华医学会骨科学分会创新与转化学组组长,中国医师协会骨科医师分会智能骨科学组组长,中国医师协会神经修复学专委会副主委,中国医师协会骨科学分会全国脊柱创伤工作委员会副主委,中国康复医学会脊柱脊髓专委会副主委兼全国脊柱脊髓基础研究主委,中华预防医学会脊柱疾病预防与控制专委会副主委,国家重点研发计划首席科学家|长期聚焦脊柱脊髓损伤与退变的基础和临床研究,主持开展全国脊柱脊髓损伤流行病学调查,首次建立中国脊柱脊髓损伤流行病学研究体系;率先构建脊髓损伤微环境分子病理数据库,系统阐明脊髓损伤分子病理机制,在国际上提出脊髓损伤后微环境失衡理论并转化应用;研发人工智能辅助脊柱脊髓疾病微创治疗体系并转化应用;在国内首次建立脊柱脊髓损伤和腰骶神经根病规范化诊疗体系,规范了脊柱脊髓损伤和腰骶神经根病快速诊断、药物及手术治疗与术后康复标准,其应用显著提高我国脊柱脊髓损伤与退变疾病的诊疗水平|主持国家重点研发计划“干细胞及转化研究”重点专项、国自然重点项目及重点国合项目、科技部国合专项等科研项目23项。在《Nature》《Proceedings of the National Academy of Sciences of the United States of America》《Nature Communications》《Advanced Healthcare Materials》《Annals of the Rheumatic Diseases》《Bioactive Materials》《Chemical Engineering Journal》《Bone Research》《Biofabrication》《Journal of Neuroinflammation》等期刊发表论文360篇(SCI论文230篇),授权专利23项(发明专利7项),主编、参编著作18部。获国家科技进步二等奖1项、天津市科技进步特等奖1项、天津市科技进步一等奖2项、中华医学科技二等奖1项等科技奖励10项

Computer vision and lumbar degenerative disease

Shiqing FENG1,2,*()   

  1. 1. Department of Spine Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
    2. Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2022-07-29 Online:2023-03-10 Published:2023-03-24
  • Contact: Shiqing FENG E-mail:sqfeng@tmu.edu.cn

摘要:

计算机视觉作为计算机科学的一个重要分支,随着近年人工智能算法的发展,逐渐得到人们的关注。相关算法已经在自动驾驶以及安防摄像头等领域得到工业化的应用,而医学图像分析目前被认为是最有可能实现工业化推广的领域之一,是人工智能研究热点。腰椎退行性疾病方面的计算机视觉研究在近年来随着深度学习技术的发展大量涌现,本文就计算机视觉技术与腰椎退行性疾病相关研究进行综述,以帮助了解计算机视觉技术在腰椎退行性疾病中应用的现状与未来发展趋势。

关键词: 计算机视觉, 腰椎退行性疾病, 人工智能, 深度学习, 腰椎间盘突出

Abstract:

As an important branch of computer science, computer vision has gradually attracted people's attention, benefited by the development of artificial intelligence in recent years. Some classical algorithms have been industrialized in areas such as autonomous driving or security cameras. Medical image analysis is currently considered one of the most likely areas to achieve industrialization and a hotspot in artificial intelligence research. Computer vision research on lumbar degenerative diseases has sprung up with the development of deep learning algorithms lately. We will review the status of computer vision research related to lumbar degenerative disease, which will be helpful for the understanding of the situation and future trend in the topic.

Key words: Computer Vision, Lumbar degenerative diseases, Artificial intelligence, Deep learning, Lumbar disc herniation

中图分类号: 

  • R681.5

图1

分类任务示意图[9]"

图2

语义分割示意图[22]"

1 GBD 2016 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390 (10100): 1211- 1259.
doi: 10.1016/s0140-6736(17)32154-2
2 Ma ZS , Wang L , Du GS , et al. What is the work environment of orthopaedic surgeons in China?[J]. Clin Orthop Relat Res, 2014, 472 (11): 3576- 3580.
doi: 10.1007/s11999-014-3859-4
3 McCulloch WS , Pitts W . A logical Calculus of the ideas immanent in nervous activity. 1943[J]. Bull Math Biol, 1990, 52 (1/2): 99- 115.
4 Rosenblatt F . The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychol Rev, 1958, 65 (6): 386- 408.
doi: 10.1037/h0042519
5 Hinton GE , Salakhutdinov RR . Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647
6 Newell A , Shaw JC , Simon HA . Elements of a theory of human problem solving[J]. Psychol Rev, 1958, 65 (3): 151- 166.
doi: 10.1037/h0048495
7 LeCun Y , Bottou L , Bengio Y , et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86 (11): 2278- 2323.
doi: 10.1109/5.726791
8 Viola P, Jones M. Fast and robust classification using asymmetric adaboost and a detector cascade[J]. Adv Neural Inf Process Syst, 2001. doi: http://dx.doi.org/.
9 Mbarki W , Bouchouicha M , Frizzi S , et al. Lumbar spine discs classification based on deep convolutional neural networks using axial view MRI[J]. Interdiscip Neurosurg, 2020, 22, 100837.
doi: 10.1016/j.inat.2020.100837
10 Vaughn ML , Cavill SJ , Taylor SJ , et al. Direct explanations for the development and use of a multi-layer perceptron network that classifies low-back-pain patients[J]. Int J Neural Syst, 2001, 11 (4): 335- 347.
doi: 10.1142/S0129065701000801
11 Koompairojn S, Hua KA, Bhadrakom C. Automatic classification system for lumbar spine X-ray images. Computer-Based Medical Systems[C]//19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06). IEEE, 2006: 213-218. doi: 10.1109/CBMS.2006.54.
12 Michopoulou SK , Costaridou L , Panagiotopoulos E , et al. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine[J]. IEEE Trans Biomed Eng, 2009, 56 (9): 2225- 2231.
doi: 10.1109/TBME.2009.2019765
13 Jaremko JL , Poncet P , Ronsky J , et al. Estimation of spinal deformity in scoliosis from torso surface cross sections[J]. Spine (Phila Pa 1976), 2001, 26 (14): 1583- 1591.
doi: 10.1097/00007632-200107150-00017
14 Lin H . Identification of spinal deformity classification with total curvature analysis and artificial neural network[J]. Conf Proc IEEE Eng Med Biol Soc, 2005, 2005, 6168- 6171.
doi: 10.1109/iembs.2005.1615903
15 Adankon MM , Dansereau J , Labelle H , et al. Non invasive classification system of scoliosis curve types using least-squares support vector machines[J]. Artif Intell Med, 2012, 56 (2): 99- 107.
doi: 10.1016/j.artmed.2012.07.002
16 Ghosh S, Raja'SA, Chaudhary V, et al. Computer-aided diagnosis for lumbar mri using heterogeneous classifiers[C] //2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, 2011: 1179-1182. doi: 10.1109/ISBI.2011.5872612.
17 Veronezi CC , de Azevedo Simões PW , Dos Santos RL , et al. Computational analysis based on artificial neural networks for aiding in diagnosing osteoarthritis of the lumbar spine[J]. Rev Bras Ortop, 2011, 46 (2): 195- 199.
doi: 10.1590/S0102-36162011000200014
18 Jamaludin A , Lootus M , Kadir T , et al. Issls prize in bioengineering science 2017: automation of reading of radiological features from magnetic resonance images (MRIS) of the lumbar spine without human intervention is comparable with an expert radiologist[J]. Eur Spine J, 2017, 26 (5): 1374- 1383.
doi: 10.1007/s00586-017-4956-3
19 Won D , Lee HJ , Lee SJ , et al. Spinal Stenosis grading in magnetic resonance imaging using deep convolutional neural networks[J]. Spine (Phila Pa 1976), 2020, 45 (12): 804- 812.
doi: 10.1097/BRS.0000000000003377
20 Niemeyer F , Galbusera F , Tao Y , et al. A deep learning model for the accurate and reliable classification of disc degeneration based on MRI data[J]. Invest Radiol, 2021, 56 (2): 78- 85.
doi: 10.1097/RLI.0000000000000709
21 Romera-Paredes B , Torr PHS . Recurrent instance segmentation[J]. ArXiv Preprint arXiv, 2016, 1511, 08250.
doi: 10.1007/978-3-319-46466-4_19
22 Lessmann N , van Ginneken B , de Jong PA , et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J]. Med Image Anal, 2019, 53, 142- 155.
doi: 10.1016/j.media.2019.02.005
23 Schmidt S , Kappes J , Bergtholdt M , et al. Spine detection and labeling using a parts-based graphical model[J]. Inf Process Med Imaging, 2007, 20, 122- 133.
doi: 10.1007/978-3-540-73273-0_11
24 Glocker B , Feulner J , Criminisi A , et al. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[J]. Med Image Comput Comput Assist Interv, 2012, 15 (pt 3): 590- 598.
25 Glocker B , Zikic D , Konukoglu E , et al. Vertebrae localization in pathological spine CT via dense classification from sparse annotations[J]. Med Image Comput Comput Assist Interv, 2013, 16 (pt 2): 262- 270.
26 Oktay AB , Akgul YS . Localization of the lumbar discs using machine learning and exact probabilistic inference[J]. Med Image Comput Comput Assist Interv, 2011, 14 (pt 3): 158- 165.
27 Chen H, Shen C, Qin J, et al. Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Lecture Notes in Computer Science. Berlin: Springer, 2015. https://doi.org/10.1007/978-3-319-24553-9_63.
28 Ben Ayed I , Punithakumar K , Garvin G , et al. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation[J]. Inf Process Med Imaging, 2011, 22, 221- 232.
doi: 10.1007/978-3-642-22092-0_19
29 Han Z , Wei B , Mercado A , et al. Spine-GAN: semantic segmentation of multiple spinal structures[J]. Med Image Anal, 2018, 50, 23- 35.
doi: 10.1016/j.media.2018.08.005
30 Zhou Y , Liu Y , Chen Q , et al. Automatic lumbar MRI detection and identification based on deep learning[J]. J Digit Imaging, 2019, 32 (3): 513- 520.
doi: 10.1007/s10278-018-0130-7
31 Kim S , Bae WC , Masuda K , et al. Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-net[J]. Appl Sci (Basel), 2018, 8 (9): 1656.
doi: 10.3390/app8091656
32 Malinda V , Lee D . Lumbar vertebrae synthetic segmentation in computed tomography images using hybrid deep generative adversarial networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020, 1327- 1330.
doi: 10.1109/embc44109.2020.9175791
33 Zheng HD , Sun YL , Kong DW , et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI[J]. Nat Commun, 2022, 13 (1): 841.
doi: 10.1038/s41467-022-28387-5
34 Madabhushi A , Lee G . Image analysis and machine learning in digital pathology: challenges and opportunities[J]. Med Image Anal, 2016, 33, 170- 175.
doi: 10.1016/j.media.2016.06.037
35 Zhou BL, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[EB/OL]. [2022-05-21]. 2015: arXiv: 1512.04150. https://arxiv.org/abs/1512.04150.
36 Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[EB/OL]. [2022-05-21]. 2016: arXiv: 1610.02391. https://arxiv.org/abs/1610.02391.
37 Nguyen A, Yosinski J, Clune J. Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks[EB/OL]. [2022-05-21]. https://arxiv.org/abs/1602.03616.
38 Pesapane F , Volonté C , Codari M , et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States[J]. Insights Imaging, 2018, 9 (5): 745- 753.
doi: 10.1007/s13244-018-0645-y
39 刘伶俐, 贺一墨, 刘祥德. 患者对人工智能医疗的认知及信任度调查[J]. 中国医学伦理学, 2019, 32 (8): 986- 990.
LIU Lingli , HE Yimo , LIU Xiangde . Investigation on patients' cognition and trust in artificial intelligence medicine[J]. Chinese Medical Ethics, 2019, 32 (8): 986- 990.
40 Feldman R , Aldana E , Stein K . Artificial Intelligence in the health care space: how we can trust what we cannot know[J]. Stanford Law & Policy Review, 2019, 30 (2): 399- 419.
41 Hajian S, Bonchi F, Castillo C. Algorithmic bias: From discrimination discovery to fairness-aware data mining[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Fracisco, 2016: 2125-2126.
42 Morid MA , Borjali A , Del Fiol G . A scoping review of transfer learning research on medical image analysis using ImageNet[J]. Comput Biol Med, 2021, 128, 104115.
doi: 10.1016/j.compbiomed.2020.104115
[1] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[2] 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133.
[3] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[4] 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45.
[5] 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106.
[6] 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96.
[7] 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21.
[8] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73.
[9] 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4.
[10] 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16.
[11] 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10.
[12] 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23.
[13] 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44.
[14] CheungCarol Y.,冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32, 38.
[15] 夏海鹏,郑燕平,周超,殷军,丛伟. 骨形态发生蛋白结合后外侧融合在腰椎退行性疾病手术中的应用[J]. 山东大学学报 (医学版), 2019, 57(5): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[6] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89 -95 .
[9] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[10] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .