山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1671-7554.0.2022.0902
• 专家综述 • 下一篇
摘要:
计算机视觉作为计算机科学的一个重要分支,随着近年人工智能算法的发展,逐渐得到人们的关注。相关算法已经在自动驾驶以及安防摄像头等领域得到工业化的应用,而医学图像分析目前被认为是最有可能实现工业化推广的领域之一,是人工智能研究热点。腰椎退行性疾病方面的计算机视觉研究在近年来随着深度学习技术的发展大量涌现,本文就计算机视觉技术与腰椎退行性疾病相关研究进行综述,以帮助了解计算机视觉技术在腰椎退行性疾病中应用的现状与未来发展趋势。
中图分类号:
1 |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390 (10100): 1211- 1259.
doi: 10.1016/s0140-6736(17)32154-2 |
2 |
Ma ZS , Wang L , Du GS , et al. What is the work environment of orthopaedic surgeons in China?[J]. Clin Orthop Relat Res, 2014, 472 (11): 3576- 3580.
doi: 10.1007/s11999-014-3859-4 |
3 | McCulloch WS , Pitts W . A logical Calculus of the ideas immanent in nervous activity. 1943[J]. Bull Math Biol, 1990, 52 (1/2): 99- 115. |
4 |
Rosenblatt F . The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychol Rev, 1958, 65 (6): 386- 408.
doi: 10.1037/h0042519 |
5 |
Hinton GE , Salakhutdinov RR . Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647 |
6 |
Newell A , Shaw JC , Simon HA . Elements of a theory of human problem solving[J]. Psychol Rev, 1958, 65 (3): 151- 166.
doi: 10.1037/h0048495 |
7 |
LeCun Y , Bottou L , Bengio Y , et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86 (11): 2278- 2323.
doi: 10.1109/5.726791 |
8 | Viola P, Jones M. Fast and robust classification using asymmetric adaboost and a detector cascade[J]. Adv Neural Inf Process Syst, 2001. doi: http://dx.doi.org/. |
9 |
Mbarki W , Bouchouicha M , Frizzi S , et al. Lumbar spine discs classification based on deep convolutional neural networks using axial view MRI[J]. Interdiscip Neurosurg, 2020, 22, 100837.
doi: 10.1016/j.inat.2020.100837 |
10 |
Vaughn ML , Cavill SJ , Taylor SJ , et al. Direct explanations for the development and use of a multi-layer perceptron network that classifies low-back-pain patients[J]. Int J Neural Syst, 2001, 11 (4): 335- 347.
doi: 10.1142/S0129065701000801 |
11 | Koompairojn S, Hua KA, Bhadrakom C. Automatic classification system for lumbar spine X-ray images. Computer-Based Medical Systems[C]//19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06). IEEE, 2006: 213-218. doi: 10.1109/CBMS.2006.54. |
12 |
Michopoulou SK , Costaridou L , Panagiotopoulos E , et al. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine[J]. IEEE Trans Biomed Eng, 2009, 56 (9): 2225- 2231.
doi: 10.1109/TBME.2009.2019765 |
13 |
Jaremko JL , Poncet P , Ronsky J , et al. Estimation of spinal deformity in scoliosis from torso surface cross sections[J]. Spine (Phila Pa 1976), 2001, 26 (14): 1583- 1591.
doi: 10.1097/00007632-200107150-00017 |
14 |
Lin H . Identification of spinal deformity classification with total curvature analysis and artificial neural network[J]. Conf Proc IEEE Eng Med Biol Soc, 2005, 2005, 6168- 6171.
doi: 10.1109/iembs.2005.1615903 |
15 |
Adankon MM , Dansereau J , Labelle H , et al. Non invasive classification system of scoliosis curve types using least-squares support vector machines[J]. Artif Intell Med, 2012, 56 (2): 99- 107.
doi: 10.1016/j.artmed.2012.07.002 |
16 | Ghosh S, Raja'SA, Chaudhary V, et al. Computer-aided diagnosis for lumbar mri using heterogeneous classifiers[C] //2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, 2011: 1179-1182. doi: 10.1109/ISBI.2011.5872612. |
17 |
Veronezi CC , de Azevedo Simões PW , Dos Santos RL , et al. Computational analysis based on artificial neural networks for aiding in diagnosing osteoarthritis of the lumbar spine[J]. Rev Bras Ortop, 2011, 46 (2): 195- 199.
doi: 10.1590/S0102-36162011000200014 |
18 |
Jamaludin A , Lootus M , Kadir T , et al. Issls prize in bioengineering science 2017: automation of reading of radiological features from magnetic resonance images (MRIS) of the lumbar spine without human intervention is comparable with an expert radiologist[J]. Eur Spine J, 2017, 26 (5): 1374- 1383.
doi: 10.1007/s00586-017-4956-3 |
19 |
Won D , Lee HJ , Lee SJ , et al. Spinal Stenosis grading in magnetic resonance imaging using deep convolutional neural networks[J]. Spine (Phila Pa 1976), 2020, 45 (12): 804- 812.
doi: 10.1097/BRS.0000000000003377 |
20 |
Niemeyer F , Galbusera F , Tao Y , et al. A deep learning model for the accurate and reliable classification of disc degeneration based on MRI data[J]. Invest Radiol, 2021, 56 (2): 78- 85.
doi: 10.1097/RLI.0000000000000709 |
21 |
Romera-Paredes B , Torr PHS . Recurrent instance segmentation[J]. ArXiv Preprint arXiv, 2016, 1511, 08250.
doi: 10.1007/978-3-319-46466-4_19 |
22 |
Lessmann N , van Ginneken B , de Jong PA , et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J]. Med Image Anal, 2019, 53, 142- 155.
doi: 10.1016/j.media.2019.02.005 |
23 |
Schmidt S , Kappes J , Bergtholdt M , et al. Spine detection and labeling using a parts-based graphical model[J]. Inf Process Med Imaging, 2007, 20, 122- 133.
doi: 10.1007/978-3-540-73273-0_11 |
24 | Glocker B , Feulner J , Criminisi A , et al. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[J]. Med Image Comput Comput Assist Interv, 2012, 15 (pt 3): 590- 598. |
25 | Glocker B , Zikic D , Konukoglu E , et al. Vertebrae localization in pathological spine CT via dense classification from sparse annotations[J]. Med Image Comput Comput Assist Interv, 2013, 16 (pt 2): 262- 270. |
26 | Oktay AB , Akgul YS . Localization of the lumbar discs using machine learning and exact probabilistic inference[J]. Med Image Comput Comput Assist Interv, 2011, 14 (pt 3): 158- 165. |
27 | Chen H, Shen C, Qin J, et al. Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Lecture Notes in Computer Science. Berlin: Springer, 2015. https://doi.org/10.1007/978-3-319-24553-9_63. |
28 |
Ben Ayed I , Punithakumar K , Garvin G , et al. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation[J]. Inf Process Med Imaging, 2011, 22, 221- 232.
doi: 10.1007/978-3-642-22092-0_19 |
29 |
Han Z , Wei B , Mercado A , et al. Spine-GAN: semantic segmentation of multiple spinal structures[J]. Med Image Anal, 2018, 50, 23- 35.
doi: 10.1016/j.media.2018.08.005 |
30 |
Zhou Y , Liu Y , Chen Q , et al. Automatic lumbar MRI detection and identification based on deep learning[J]. J Digit Imaging, 2019, 32 (3): 513- 520.
doi: 10.1007/s10278-018-0130-7 |
31 |
Kim S , Bae WC , Masuda K , et al. Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-net[J]. Appl Sci (Basel), 2018, 8 (9): 1656.
doi: 10.3390/app8091656 |
32 |
Malinda V , Lee D . Lumbar vertebrae synthetic segmentation in computed tomography images using hybrid deep generative adversarial networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020, 1327- 1330.
doi: 10.1109/embc44109.2020.9175791 |
33 |
Zheng HD , Sun YL , Kong DW , et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI[J]. Nat Commun, 2022, 13 (1): 841.
doi: 10.1038/s41467-022-28387-5 |
34 |
Madabhushi A , Lee G . Image analysis and machine learning in digital pathology: challenges and opportunities[J]. Med Image Anal, 2016, 33, 170- 175.
doi: 10.1016/j.media.2016.06.037 |
35 | Zhou BL, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[EB/OL]. [2022-05-21]. 2015: arXiv: 1512.04150. https://arxiv.org/abs/1512.04150. |
36 | Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[EB/OL]. [2022-05-21]. 2016: arXiv: 1610.02391. https://arxiv.org/abs/1610.02391. |
37 | Nguyen A, Yosinski J, Clune J. Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks[EB/OL]. [2022-05-21]. https://arxiv.org/abs/1602.03616. |
38 |
Pesapane F , Volonté C , Codari M , et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States[J]. Insights Imaging, 2018, 9 (5): 745- 753.
doi: 10.1007/s13244-018-0645-y |
39 | 刘伶俐, 贺一墨, 刘祥德. 患者对人工智能医疗的认知及信任度调查[J]. 中国医学伦理学, 2019, 32 (8): 986- 990. |
LIU Lingli , HE Yimo , LIU Xiangde . Investigation on patients' cognition and trust in artificial intelligence medicine[J]. Chinese Medical Ethics, 2019, 32 (8): 986- 990. | |
40 | Feldman R , Aldana E , Stein K . Artificial Intelligence in the health care space: how we can trust what we cannot know[J]. Stanford Law & Policy Review, 2019, 30 (2): 399- 419. |
41 | Hajian S, Bonchi F, Castillo C. Algorithmic bias: From discrimination discovery to fairness-aware data mining[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Fracisco, 2016: 2125-2126. |
42 |
Morid MA , Borjali A , Del Fiol G . A scoping review of transfer learning research on medical image analysis using ImageNet[J]. Comput Biol Med, 2021, 128, 104115.
doi: 10.1016/j.compbiomed.2020.104115 |
[1] | 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20. |
[2] | 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133. |
[3] | 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89. |
[4] | 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45. |
[5] | 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106. |
[6] | 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96. |
[7] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[8] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[9] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4. |
[10] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[11] | 何明光,刘驰,李治玺. 人工智能在眼科真实临床场景的应用:机遇和挑战[J]. 山东大学学报 (医学版), 2020, 58(11): 1-10. |
[12] | 戈宗元,贺婉佶,琚烈,姚轩,王璘,黄烨霖,杨志文,熊健皓,包怡宁,李明,张兵,赵昕. 眼科人工智能的算法新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 17-23. |
[13] | 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44. |
[14] | CheungCarol Y.,冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32, 38. |
[15] | 夏海鹏,郑燕平,周超,殷军,丛伟. 骨形态发生蛋白结合后外侧融合在腰椎退行性疾病手术中的应用[J]. 山东大学学报 (医学版), 2019, 57(5): 62-66. |
|