您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 97-106.doi: 10.6040/j.issn.1671-7554.0.2022.1113

• 临床医学 • 上一篇    

机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访

王政1,孙小刚2,李超1,王连雷1,李冬来1,原所茂1,田永昊1,刘新宇1   

  1. 1.山东大学齐鲁医院骨科, 山东 济南 250012;2.滕州市中心人民医院脊柱外科, 山东 滕州 277500
  • 发布日期:2023-03-24
  • 通讯作者: 刘新宇. E-mail:newyuliu@163.com
  • 基金资助:
    国家自然科学基金(81874022,82172483,82102522)

Comparison of robot-assisted minimally invasive and freehand open transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: a 2-year follow-up

WANG Zheng1, SUN Xiaogang2, LI Chao1, WANG Lianlei1, LI Donglai1, YUAN Suomao1, TIAN Yonghao1, LIU Xinyu1   

  1. 1. Department of Spinal Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Spinal Surgery, Tengzhou Central Peoples Hospital, Tengzhou 277500, Shandong, China
  • Published:2023-03-24

摘要: 目的 前瞻性比较了机器人辅助微创经椎间孔入路腰椎椎体间融合术(MIS-TLIF)和徒手开放经椎间孔入路腰椎椎体间融合术(TLIF)的临床疗效和影像学改变。 方法 研究包括127例在山东大学齐鲁医院接受手术的腰椎退行性疾病的患者。73例患者接受了机器人辅助下MIS-TLIF(机器人组),54例患者接受了开放徒手TLIF(徒手组)。机器人组进一步分为单节段机器人组(n=52)和双节段机器人组(n=21)。徒手组进一步分为单节段徒手组(n=39)和双节段徒手组(n=15)。临床结果观察指标为视觉模拟量表(VAS)评分、Oswestry残疾指数(ODI)评分、手术时间、术中透视次数、术中出血量、术后住院时间和术后并发症。影像学指标为螺钉放置的准确性、关节突关节侵扰(FJV)、融合状态以及2年随访时近端邻近节段的椎间盘高度变化。 结果 机器人组术后3 d腰痛VAS评分、失血量均低于徒手组(P<0.05)。两组术后2年腰痛及下肢痛VAS和ODI评分、术后住院时间差异无统计学意义(P>0.05)。机器人组的手术时间比徒手组长(P<0.05),单节段机器人组的手术时间比单节段徒手组长(P<0.05),而双节段机器人组和双节段徒手组之间的手术时间差异无统计学意义(P>0.05)。对患者而言,机器人组术中透视次数明显多于徒手组(P<0.05)。对于外科医生来说,机器人组的术中透视次数明显低于徒手组(P<0.05)。在机器人组中,三个导针出现术中漂移,另外一例患者的椎弓根螺钉穿透椎弓根外壁。在徒手组中,两枚椎弓根螺钉穿透了椎弓根内壁。机器人组临床可接受的螺钉置入比例(A级和B级)准确率明显高于徒手组(P<0.05)。徒手组的平均FJV分级明显高于机器人组(P<0.05)。在术后2年的随访中,两组之间的椎间融合状态差异无统计学意义(P>0.05);但机器人组近端邻近节段的椎间高度的下降明显小于徒手组(P<0.05)。 结论 在TLIF手术中,相比于开放徒手椎弓根螺钉置入,机器人辅助经皮椎弓根螺钉置入是一种更安全、更准确的替代方法。

关键词: 腰椎退行性疾病, 机器人手术, 椎弓根螺钉, 椎体间融合, 关节突侵扰, 邻近节段退变

Abstract: Objective To prospectively compare the clinical and radiographic outcomes between robot-assisted minimally invasive transforaminal lumbar interbody fusion(MIS-TLIF)and freehand open transforaminal lumbar interbody fusion(TLIF)in patients with degenerative lumbar spinal diseases. Methods A total of 127 patients with lumbar degenerative diseases receiving surgery in Qilu Hospital of Shandong University were enrolled, including 73 who underwent robot-assisted MIS-TLIF(group A)and 54 who underwent open TLIF(group B). Group A was subdivided into subgroup AI(52 single-level patients)and subgroup AII(21 double-level patients). Group B was subdivided into subgroup BI(39 single-level patients)and subgroup BII(15 double-level patients). The clinical outcome parameters were compared, including the Visual Analog Scale(VAS)score, Oswestry Disability Index(ODI)score, operation time, number of intraoperative fluoroscopies, intraoperative blood loss, postoperative hospital stay, and postoperative complications. The radiographic measures included the accuracy of screw placement, facet joint violation(FJV), fusion status, and change in disc height at the proximal adjacent segment at 2-year follow-up. Results Group A had lower VAS score for back pain at 3 days postoperatively, and less blood loss than group B(P<0.05). There were no significant differences between the two groups in terms of postoperative hospital stay, VAS score and ODI score at 2 years postoperatively(P>0.05). Group A needed longer operation time than group B(P<0.05), subgroup AI needed longer operation time than subgroup BI(P<0.05); however, there was no significant difference between subgroups AII and BII(P>0.05). The number of intraoperative fluoroscopies for patients was significantly higher in group A than in group B(P<0.05), while it was significantly lower in group A than in group B for surgeons(P<0.05). In Group A, three guide pins exhibited drift and one patient developed a lateral wall violation by a pedicle screw. In Group B, two pedicle screws caused an inner wall violation. The rate of clinically acceptable screws(grades A and B)was higher in group A than in group B(P<0.05). The FJV grade was significantly higher in group B than in group A(P<0.05). During the 2-year follow-up, there was no significant difference in classification of interbody fusion between the two groups(P>0.05), but the decrease in disc height at the proximal adjacent segment was significantly less in group A than in group B (P<0.05). Conclusion Robot-assisted percutaneous pedicle screw placement is a safer and more accurate alternative to conventional freehand open pedicle screw insertion in TLIF.

Key words: Degenerative lumbar spinal diseases, Robotic surgery, Pedicle screw, Lumbar fusion, Facet joint violation, Adjacent segment disease

中图分类号: 

  • R681.5+7
[1] Harms J, Rolinger H. [A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion(authors transl)] [J]. Z Orthop Ihre Grenzgeb, 1982, 120(3): 343-347.
[2] Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery[J]. Clin Neurosurg, 2002, 49: 499-517.
[3] Goldstein CL, Macwan K, Sundararajan K, et al. Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review[J]. Clin Orthop Relat Res, 2014, 472(6): 1727-1737.
[4] Qu JT, Tang Y, Wang M, et al. Comparison of MIS vs. open PLIF/TLIF with regard to clinical improvement, fusion rate, and incidence of major complication: a meta-analysis[J]. Eur Spine J, 2015, 24(5): 1058-1065.
[5] Khan NR, Clark AJ, Lee SL, et al. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis[J]. Neurosurgery, 2015, 77(6): 847-874; discussion 874.
[6] Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations[J]. Eur Spine J, 2002, 11(6): 594-598.
[7] Katonis P, Christoforakis J, Kontakis G, et al. Complications and problems related to pedicle screw fixation of the spine[J]. Clin Orthop Relat Res, 2003(411): 86-94. doi: 10.1097/01.blo.0000068761.86536.1d.
[8] Fan Y, Du JP, Zhang JN, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery[J]. Med Sci Monitor, 2017, 23: 5960-5968. doi: 10.12659/msm.905713.
[9] Fan Y, Du JP, Liu JJ, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery: an updated meta-analysis[J]. Medicine(Baltimore), 2018, 97(22): e10970. doi: 10.1097/MD.0000000000010970.
[10] DSouza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends[J]. Robot Surg, 2019, 6: 9-23. doi: 10.2147/RSRR.S190720.
[11] Nolte LP, Zamorano L, Visarius H, et al. Clinical evaluation of a system for precision enhancement in spine surgery[J]. Clin Biomech(Bristol, Avon), 1995, 10(6): 293-303.
[12] Park P, Foley KT, Cowan JA, et al. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results[J]. Surg Neurol Int, 2010, 1: 44. doi: 10.4103/2152-7806.68705.
[13] Tian NF, Huang QS, Zhou P, et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies[J]. Eur Spine J, 2011, 20(6): 846-859.
[14] Wolf A, Shoham M, Michael S, et al. Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments[J]. Spine(Phila Pa 1976), 2004, 29(2): 220-228.
[15] Fujishiro T, Nakaya Y, Fukumoto S, et al. Accuracy of pedicle screw placement with robotic guidance system: a cadaveric study[J]. Spine(Phila Pa 1976), 2015, 40(24):1882-1889.
[16] Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. J Neurosurg Spine, 2019: 1-8. doi: 10.3171/2018.10.SPINE18487.
[17] Kim HJ, Lee SH, Chang BS, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test[J]. Spine(Phila Pa 1976), 2015, 40(2): 87-94.
[18] Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo[J]. Spine(Phila Pa 1976), 1990, 15(1): 11-14.
[19] Babu R, Park JG, Mehta AI, et al. Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement[J]. Neurosurgery, 2012, 71(5): 962-970.
[20] Son S, Lee SG, Kim WK, et al. Disc height discrepancy between supine and standing positions as a screening metric for discogenic back pain in patients with disc degeneration[J]. Spine J, 2021, 21(1): 71-79.
[21] Selby MD, Clark SR, Hall DJ, et al. Radiologic assessment of spinal fusion[J]. J Am Acad Orthop Surg, 2012, 20(11): 694-703.
[22] Fogel GR, Toohey JS, Neidre A, et al. Fusion assessment of posterior lumbar interbody fusion using radiolucent cages: X-ray films and helical computed tomography scans compared with surgical exploration of fusion[J]. Spine J, 2008, 8(4): 570-577.
[23] Kim HJ, Kang KT, Chun HJ, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial[J]. Int J Med Robot, 2018,14(4): e1917. doi: 10.1002/rcs.1917.
[24] Chang M, Wang L, Yuan S, et al. Percutaneous endoscopic robot-assisted transforaminal lumbar interbody fusion(PE RA-TLIF)for lumbar spondylolisthesis: a technical note and two years clinical results[J]. Pain Physician, 2022, 25(1): E73-E86.
[25] Chen X, Song Q, Wang K, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a retrospective matched-control analysis for clinical and quality-of-life outcomes[J]. J Comp Eff Res, 2021, 10(10): 845-856.
[26] Cui GY, Han XG, Wei Y, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion in the treatment of lumbar spondylolisthesis[J]. Orthop Surg, 2021, 13(7): 1960-1968.
[27] Ravi B, Zahrai A, Rampersaud R. Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws[J]. Spine, 2011, 36(1): 84-91.
[28] Hyun SJ, Kim KJ, Jahng TA, et al. Minimally invasive robotic versus open gluoroscopic-guided spinal instrumented gusions: a randomized controlled trial[J]. Spine, 2017, 42(6): 353-358.
[29] Wang J, Zhou Y, Zhang ZF, et al. Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine[J]. Eur Spine J, 2011, 20(4): 623-628.
[30] Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives[J]. Neurosurgery, 2013, 72(Suppl 1): A12-A18.
[31] Kantelhardt S, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20(6): 860-868.
[32] Lieberman IH, Hardenbrook MA, Wang JC, et al. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system[J]. J Spinal Disord Tech, 2012, 25(5): 241-248.
[33] Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement[J]. Spine(Phila Pa 1976), 2009, 34(4): 392-398.
[34] Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients[J]. Eur Spine J, 2013, 22(3): 661-666.
[35] Moshirfar A, Jenis LG, Spector LR, et al. Computed tomography evaluation of superior-segment facet-joint violation after pedicle instrumentation of the lumbar spine with a midline surgical approach[J]. Spine(Phila Pa 1976), 2006, 31(22): 2624-2629.
[36] Tian W, Xu YF, Liu B, et al. Lumbar spine superior-level facet joint violations: percutaneous versus open pedicle screw insertion using intraoperative 3-dimensional computer-assisted navigation[J]. Chin Med J, 2014, 127(22): 3852-3856.
[37] Park Y, Ha JW, Lee YT, et al. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion[J]. Spine J, 2011, 11(4): 295-302.
[38] Zhang Q, Xu YF, Tian W, et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthop Surg, 2019, 11(5): 850-856.
[39] Zhao Y, Yuan S, Tian Y, et al. Risk factors related to superior facet joint violation during lumbar percutaneous pedicle screw placement in minimally invasive transforaminal lumbar interbody fusion(MIS-TLIF)[J]. World Neurosurg, 2020, 139: e716-e723. doi: 10.1016/j.wneu.2020.04.118.
[40] Knox JB, Dai JM 3rd, Orchowski JR, et al. Superior segment facet joint violation and cortical violation after minimally invasive pedicle screw placement[J]. Spine J, 2011, 11(3): 213-217.
[41] Cheh G, Bridwell KH, Lenke LG, et al. Adjacent segment disease following lumbar/thoracolumbar fusion with pedicle screw instrumentation-a minimum 5-year follow-up[J]. Spine, 2007, 32(20): 2253-2257.
[42] Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature[J]. Spine(Phila Pa 1976), 2004, 29(17): 1938-1944.
[43] Kim HJ, Jung WI, Chang BS, et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery[J]. Int J Med Robot, 2017, 13(3). doi: 10.1002/rcs.1779.
[44] Kim HJ, Kang KT, Park SC, et al. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial-perspective for patient-specific finite element analysis[J]. Spine J, 2017, 17(5): 671-680.
[1] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[2] 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6.
[3] 匡风霞,赵晓虹,韩宝佳,高成杰. 对控制机器人甲状腺癌根治术患者手术应激反应麻醉深度的探讨[J]. 山东大学学报 (医学版), 2022, 60(5): 81-86.
[4] 庄大勇,贺青卿,李小磊,周鹏,岳涛,徐婧. 达芬奇机器人在儿童及青少年甲状腺癌中的应用[J]. 山东大学学报 (医学版), 2021, 59(1): 45-48.
[5] 赵健,韩晓玲,王刚,刘江,周嘉晖,王海锋,江志伟,黎介寿. 多模式止痛对机器人45例远端胃切除术后肠功能的影响[J]. 山东大学学报 (医学版), 2019, 57(9): 43-47.
[6] 夏海鹏,郑燕平,周超,殷军,丛伟. 骨形态发生蛋白结合后外侧融合在腰椎退行性疾病手术中的应用[J]. 山东大学学报 (医学版), 2019, 57(5): 62-66.
[7] 贾军,赵钇伟,原所茂,田永昊,刘新宇,郑燕平. 腰椎管狭窄单节段经椎间孔椎体间融合手术前后矢状位参数值的变化[J]. 山东大学学报 (医学版), 2019, 57(5): 36-42.
[8] 关小明,张意茗,范晓东. 单孔腹腔镜技术的发展及展望[J]. 山东大学学报 (医学版), 2019, 57(12): 5-9.
[9] 周超, 田永昊, 郑燕平, 刘新宇, 王虎虎. 经椎间孔腰椎椎体间融合术治疗单节段退变性腰椎滑脱的疗效分析[J]. 山东大学学报(医学版), 2015, 53(12): 71-75.
[10] 徐慧荣, 李健宁, 李增军, 徐忠法. 机器人手术与腹腔镜手术在直肠癌低位前切除术中疗效的Meta分析[J]. 山东大学学报(医学版), 2014, 52(7): 60-65.
[11] 王秉翔1,聂林1, 蒲华清2,张志勉2. Dynesys动态稳定系统与腰椎后路椎体间融合术术后疗效的Meta分析[J]. 山东大学学报(医学版), 2013, 51(9): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!