您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 7-13.doi: 10.6040/j.issn.1671-7554.0.2022.1331

• 专家综述 • 上一篇    下一篇

骨科冲击波治疗的智能化发展现状及趋势分析

刘亚军1,2,郎昭1,2,郭安忆1,2,刘文勇3,4,*()   

  1. 1. 北京积水潭医院国家骨科医学中心,北京 100035
    2. 北京市创伤骨科研究所,北京 100035
    3. 北京航空航天大学生物与医学工程学院,北京 100083
    4. 北京市生物医学工程高精尖创新中心,北京 100083
  • 收稿日期:2022-11-21 出版日期:2023-03-10 发布日期:2023-03-24
  • 通讯作者: 刘文勇 E-mail:wyliu@buaa.edu.cn
  • 作者简介:刘亚军,北京积水潭医院副院长、脊柱外科主任医师,北京大学医学部教授,博士研究生导师;享受国务院政府特殊津贴专家,中国医学装备协会骨与软组织损伤修复分会主任委员、中国研究型医院学会冲击波医学专业委员会副主任委员、北京生物医学工程学会秘书长;英国爱丁堡皇家外科学院Fellow(FRCS);入选国家百千万人才工程(有突出贡献中青年专家)、青年北京学者、北京市科技新星、北京市高层次创新创业人才支持计划领军人才|主要研究领域:微创与智能骨科技术、骨与软组织损伤修复、环境与骨健康。以临床需求为牵引,开展基础与医工融合交叉研究。在致病机理方面发现了大气细颗粒物与骨关节炎的正向关联和细颗粒物在关节间隙的持续累积,阐明了大气细颗粒物致骨关节损伤的机制,拓展了环境因素与骨关节炎的新研究领域。在国内较早参与了导航机器人技术在骨科的临床应用与研究,创新骨科机器人应用领域,自主研发了冲击波治疗机器人。近5年先后主持包括国家重点研发计划和国家自然科学基金重大研究计划在内的10项国家/省部级科研项目,累计发表学术论文112篇,包括第一/通信作者论文34篇。获授权欧洲发明专利1项、国家发明专利7项和实用新型专利10项,其中4项国家发明专利和5项实用新型专利已临床转化。参与制定国际指南1项、全国学会指南5项。获国家科技进步二等奖1项、北京市科技进步一等奖3项、北京市自然科学奖二等奖1项、中华医学科技奖二等奖1项

Progresses and trends of intelligent technologies in orthopedic shock wave therapy

Yajun LIU1,2,Zhao LANG1,2,Anyi GUO1,2,Wenyong LIU3,4,*()   

  1. 1. National Center for Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, China
    2. Beijing Research Institute of Traumatology and Orthopedics, Beijing 100035, China
    3. School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
    4. Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
  • Received:2022-11-21 Online:2023-03-10 Published:2023-03-24
  • Contact: Wenyong LIU E-mail:wyliu@buaa.edu.cn

摘要:

体外冲击波治疗以其安全无创的临床优势在骨科得到了广泛应用,但传统治疗手段普遍存在的主观经验决策和手动长时操作等问题限制了该方法的推广和进一步发展。智能技术已经开始进入骨科冲击波治疗领域,并发展迅速。本文总结了计算机导航、机器学习和机器人三类智能技术在骨科冲击波治疗中的研究现状及应用特点,表明:现阶段,计算机导航可以有效辅助医生完成冲击波探头的准确定位,机器学习方法能够辅助实现冲击波治疗能量参数的自动预测;机器人已经表现出了显著的潜在临床效能,尤其是能够大幅降低医师操作强度;三类技术分别从“眼”“脑”“手”的角度,为提升骨科冲击波治疗智能化水平提供全面支持。在此基础上,本文从临床治疗机制与量效关系、方案规划智能化与临床适宜性、治疗操作自动化与机器人辅助等方面,展望了未来发展趋势。

关键词: 体外冲击波治疗, 骨科, 计算机导航, 机器学习, 医用机器人

Abstract:

Extracorporeal shock wave therapy (ESWT) is widely adopted in clinical orthopedics for its safe and non-invasive treatment. However, the experience-based subjective decision-making and long-lasting manual operation of physicians in the conventional orthopedic ESWT have limited its further development. As intelligent technologies are rapidly getting into the orthopedic ESWT, this review summarizes the state-of-the-art of research and application of intelligent technologies in orthopedic ESWT from aspects of computer navigation, machine learning and robotics. Computer navigation technologies can intuitively assist physicians to accurately locate the shock wave probe on the anatomical target of patients. The machine learning methods can automatically predict energy parameters in ESWT. Robotic systems have demonstrated their potential advantages in clinical efficacy especially in the dramatical alleviation of the operation intensity of physicians. These intelligent technologies provide comprehensive support for intellectualization of orthopedic ESWT from eye, brain and hand, respectively. This review also concludes the future technical trends from aspects of the ESWT biological mechanism and dose-effect relationship, the treatment protocol planning and usability of machine learning, and the treatment automation and robotic assistance.

Key words: Extracorporeal shock wave therapy, Orthopedics, Computer navigation, Machine learning, Medical robot

中图分类号: 

  • R454
1 中华医学会物理医学与康复学分会, 肌肉骨骼疾病体外冲击波治疗专家共识组. 肌肉骨骼疾病体外冲击波治疗专家共识[J]. 中华物理医学与康复杂志, 2019, 41 (7): 481- 487.
doi: 10.3760/cma.j.issn.0254-1424.2019.07.001
2 Chaussy C , Brendel W , Schmiedt E . Extracorporeally induced destruction of kidney stones by shock waves[J]. Lancet, 1980, 2 (8207): 1265- 1268.
3 Park SH , Park JB , Weinstein JN , et al. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopedics. I. Foundations and overview[J]. J Appl Biomater, 1991, 2 (2): 115- 126.
doi: 10.1002/jab.770020207
4 Fan H. The usage of extracorporeal shockwave therapy in rehabilitation medicine[C]// 2020 4th International Conference on Computational Biology and Bioinformatics, December 27-29, 2020, Bali Island, Indonesia: ICCBB'20, 42-45. doi: 10.1145/3449258.3449266.
5 Han XG , Tian W . Artificial intelligence in orthopedic surgery: current state and future perspective[J]. Chin Med J (Engl), 2019, 132 (21): 2521- 2523.
doi: 10.1097/CM9.0000000000000479
6 Schatz KD , Nehrer S , Dorotka R , et al. Computer-navigated high-energy shock wave therapy following failed distraction treatment of congenital tibial pseudarthrosis[J]. Orthopade, 2002, 31 (7): 663- 666.
doi: 10.1007/s00132-002-0327-8
7 綦惠, 杰永生, 郑蕊, 等. 放散式体外冲击波对软骨细胞生物学行为的影响[J]. 北京生物医学工程, 2020, 39 (3): 278- 284.
doi: 10.3969/j.issn.1002-3208.2020.03.009.
QI Hui , JIE Yongsheng , ZHENG Rui , et al. Effect of radial extracorporeal shock wave on the biological behaviors of chondrocytes[J]. Beijing Biomedical Engineering, 2020, 39 (3): 278- 284.
doi: 10.3969/j.issn.1002-3208.2020.03.009.
8 Li B , Qang R , Huang X , et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model[J]. Front Endocrinol (Lausanne), 2021, 12, 627718.
doi: 10.3389/fendo.2021.627718
9 Kobayashi M , Chijimatsu R , Yoshikawa H , et al. Extracorporeal shock wave therapy accelerates endochondral ossification and fracture healing in a rat femur delayed-union model[J]. Biochem Biophys Res Commun, 2020, 530 (4): 632- 637.
doi: 10.1016/j.bbrc.2020.07.084
10 宋轲, 刘寰, 武文亮, 等. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54 (6): 1- 6.
SONG Ke , LIU Huan , WU Wenliang , et al. Combination of bone marrow mesenchymal stem cells, platelet gel and extrocorporeal shock wave on bone regeneration[J]. Journal of Shandong University (Health Sciences), 2016, 54 (6): 1- 6.
11 Chou WY , Cheng JH , Wang CJ , et al. Shockwave targeting on subchondral bone is more suitable than articular cartilage for knee osteoarthritis[J]. Int J Med Sci, 2019, 12 (1): 156- 166.
12 Liu Y , Chen X , Guo A , et al. Quantitative assessments of mechanical responses upon radial extracorporeal shock wave therapy[J]. Adv Sci (Weinh), 2018, 5 (3): 1700797.
doi: 10.1002/advs.201700797
13 Alkhamaali ZK , Crocombe AD , Solan MC , et al. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis[J]. Comput Methods Biomech Biomed Engin, 2016, 19 (10): 1069- 1078.
doi: 10.1080/10255842.2015.1096348
14 Eremina G, Smolin A. Shock-wave impact on the knee joint affected with osteoarthritis and after arthroplasty[EB/OL]. (2022-05-31)[2022-07-15]. https://doi.org/10.1016/j.dt.2022.06.002.
15 Chen Y , Lyu K , Lu J , et al. Biological response of extracorporeal shock wave therapy to tendinopathy in vivo (review)[J]. Review Front Vet Sci, 2022, 9, 851894.
doi: 10.3389/fvets.2022.851894
16 Ke MJ , Chen LC , Chou YC , et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: a prospective, randomized, single-blind, placebo-controlled trial[J]. Sci Rep, 2016, 6, 38344.
doi: 10.1038/srep38344
17 Mittermayr R , Haffner N , Feichtinger X , et al. The role of shockwaves in the enhancement of bone repair-from basic principles to clinical application[J]. Injury, 2021, 52 (Suppl 2): S84- S90.
doi: 10.1016/j.injury.2021.02.081
18 Schmitz C , Csaszar NB , Milz S , et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database[J]. Br Med Bull, 2015, 116 (1): 115- 138.
19 Zhang YF , Liu Y , Chou SW , et al. Dose-related effects of radial extracorporeal shock wave therapy for knee osteoarthritis: a randomized controlled trial[J]. J Rehabil Med, 2021, 53 (1): jrm00144.
doi: 10.2340//6501977-2782
20 Fiani B , Davati C , Griepp DW , et al. Enhanced spinal therapy: extracorporeal shock wave therapy for the spine[J]. Cureus, 2020, 12 (10): e11200.
doi: 10.7759/cureus.11200
21 张继英, 侯宇, 薛涛, 等. 不同频率冲击波促进兔管状骨成骨的实验研究[J]. 中国运动医学杂志, 2010, 29 (1): 51- 55.
doi: 10.16038/j.1000-6710.2010.01.008
ZHANG Jiying , HOU Yu , XUE Tao , et al. An experimental pathological study of different frequency extracorporeal shock wave induced tibia osteogenesis in rabbits[J]. Chinese Journal of Sports Medicine, 2010, 29 (1): 51- 55.
doi: 10.16038/j.1000-6710.2010.01.008
22 Zhang X , Yan X , Wang C , et al. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy[J]. J Surg Res, 2014, 186 (1): 484- 492.
doi: 10.1016/j.jss.2013.08.013
23 Zheng G , Nolte LP . Computer-assisted orthopedic surgery: current state and future perspective[J]. Front Surg, 2015, 2, 66.
doi: 10.3389/fsurg.2015.00066
24 Sabeti-Aschraf M , Dorotka R , Goll A , et al. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff[J]. Am J Sports Med, 2005, 33 (9): 1365- 1368.
doi: 10.1177/0363546504273052
25 Sabeti M , Dorotka R , Goll A , et al. A comparison of two different treatments with navigated extracorporeal shock-wave therapy for calcifying tendinitis-a randomized controlled trial[J]. Wien Klin Wochenschr, 2007, 119 (3-4): 124- 128.
doi: 10.1007/s00508-006-0723-x
26 Hagelauer U , Russo S , Gigliotti S , et al. Interactive navigation system for shock wave applications[J]. Comput Aided Surg, 2001, 6 (1): 22- 31.
doi: 10.3109/10929080109145990
27 Farr S , Sevelda F , Mader P , et al. Extracorporeal shockwave therapy in calcifying tendinitis of the shoulder[J]. Randomized Controlled Trial Knee Surg Sports Traumatol Arthrosc, 2011, 19 (12): 2085- 2089.
doi: 10.1007/s00167-011-1479-z
28 He W , Guo A , Wang S , et al. Should nonunion femoral neck fractures in children be treated with extracorporeal shockwave therapy under navigation guidance?[J]. Interdisciplinary Neurosurgery, 2020, 20, 100629.
doi: 10.1016/j.inat.2020.100629
29 Notarnicola A , Maccagnano G , Tafuri S , et al. Prognostic factors of extracorporeal shock wave therapy for tendinopathies[J]. Musculoskelet Surg, 2016, 100 (1): 53- 61.
doi: 10.1007/s12306-015-0375-y
30 Salem H , Soria D , Lund JN , et al. A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology[J]. BMC Med Inform Decis Mak, 2021, 21 (1): 223.
doi: 10.1186/s12911-021-01585-9
31 Goyal NK , Kumar A , Trivedi S , et al. A comparative study of artificial neural network and multivariate regression analysis to analyze optimum renal stone fragmentation by extracorporeal shock wave lithotripsy[J]. Saudi J Kidney Dis Transpl, 2010, 21 (6): 1073- 1080.
32 Mannil M , von Spiczak J , Hermanns T , et al. Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones[J]. J Urol, 2018, 200 (4): 829- 836.
doi: 10.1016/j.juro.2018.04.059
33 Xu ZH , Zhou S , Jia CP , et al. Prediction of proximal ureteral stones clearance after shock wave lithotripsy using an artificial neural network[J]. Urol J, 2021, 18 (5): 491- 496.
34 Yang SW , Hyon YK , Na HS , et al. Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy[J]. BMC Urol, 2020, 20 (1): 88.
doi: 10.1186/s12894-020-00662-X
35 Michaels EK , Niederberger CS , Golden RM , et al. Use of a neural network to predict stone growth after shock wave lithotripsy[J]. Urology, 1998, 51 (2): 335- 338.
doi: 10.1016/S0090-4295(97)00611-0
36 蒋杰宏, 姚聪, 陈健芬, 等. 人工神经网络及Logistic回归模型对预测体外冲击波治疗上尿路结石的疗效分析[J]. 国际医药卫生导报, 2016, 22 (12): 1670- 1673.
doi: 10.3760/cma.j.issn.1007-1245.2016.12.002
JIANG Jiehong , YAO Cong , CHEN Jianfen , et al. Role of artificial neural network and logistic regression model in predicting effect of extracorporeal shock wave for upper urinary tract calculi[J]. International Medicine and Health Guidance News, 2016, 22 (12): 1670- 1673.
doi: 10.3760/cma.j.issn.1007-1245.2016.12.002
37 Muller S , Abildsnes H , Ostvik A , et al. Can a dinosaur think? Implementation of artificial intelligence in extracorporeal shock wave lithotripsy[J]. Eur Urol Open Sci, 2021, 27, 33- 42.
doi: 10.1016/j.euros.2021.02.007
38 Chen ZP , Zeng DD , Seltzer RGN , et al. Automated generation of personalized shock wave lithotripsy protocols: treatment planning using deep learning[J]. JMIR Med Inform, 2021, 9 (5): e24721.
doi: 10.2196/24721
39 Yin M , Chen N , Huang Q , et al. New and accurate predictive model for the efficacy of extracorporeal shock wave therapy in managing patients with chronic plantar fasciitis[J]. Arch Phys Med Rehabil, 2017, 98 (12): 2371- 2377.
doi: 10.1016/j.apmr.2017.05.016
40 Yin M , Ma J , Xu J , et al. Use of artificial neural networks to identify the predictive factors of extracorporeal shock wave therapy treating patients with chronic plantar fasciitis[J]. Sci Rep, 2019, 9 (1): 4207.
doi: 10.1038/s41598-019s-39026-3
41 Wang ZY, Li CW, Guo AY, et al. Influences of predictive factors on treatment effect of delayed union with radial extracorporeal shock wave therapy[C] // 2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 20 August 2022, Beijing: IEEE, 234-239. doi: 10.1109/WRCSARA57040.2022.9903993.
42 Y in , M C , Yan YJ , Tong ZY , et al. Development and validation of a novel scoring system for severity of plantar fasciitis[J]. Orthop Surg, 2020, 12 (6): 1882- 1889.
doi: 10.1111/os.12827
43 刘文勇, 胡蕊燕, 王再跃, 等. 脊柱手术机器人研究进展及趋势分析[J]. 骨科临床与研究杂志, 2020, 5 (3): 185- 189.
44 Pu YR , Manousakas I , Liang SM , et al. Design of the dual stone locating system on an extracorporeal shock wave lithotriptor[J]. Sensors, 2013, 13 (1): 1319- 1328.
doi: 10.3390/s130101319
45 Rassweiler J , Rieker P , Rassweiler-Seyfried MC . Extracorporeal shock-wave lithotripsy: is it still valid in the era of robotic endourology? Can it be more efficient?[J]. Curr Opin Urol, 2020, 30 (2): 120- 129.
doi: 10.1097/MOU.0000000000000732
46 鲁守银, 李臣. 中医按摩机器人关键技术研究进展[J]. 山东建筑大学学报, 2017, 32 (1): 60- 68.
LU Shouyin , LI Chen . Research progress of key technology of Chinese medical massage robot[J]. Journal of Shandong Jianzhu University, 2017, 32 (1): 60- 68.
47 Zhai J , Zeng X , Su Z . An intelligent control system for robot massaging with uncertain skin characteristics[J]. Industrial Robot, 2022, 49 (4): 634- 644.
doi: 10.1108/IR-11-2021-0266
48 魏江艳, 付渊博, 刘璐, 等. 智能针灸机器人的关键技术研究进展[J]. 中华中医药杂志, 2021, 36 (2): 979- 982.
WEI Jiangyan , FU Yuanbo , LIU Lu , et al. Research progress on key technologies of intelligent acupuncture robot[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36 (2): 979- 982.
49 Xu T , Xia Y . Guidance for acupuncture robot with potentially utilizing medical robotic technologies[J]. Evid Based Complement Alternat Med, 2021, 2021, 8883598.
doi: 10.1155/2021/8883598
50 Nature Research Custom, Beijing Jishuitan Hospital. A pioneer in medical robotics[EB/OL]. (2020-06-24)[2022-07-15]. https://www.nature.com/articles/d42473-020-00259-w.
[1] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[2] 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45.
[3] 巨艳丽,王丽华,成芳,黄凤艳,陈学禹,贾红英. 基于机器学习构建放射性碘治疗疗效的预测模型[J]. 山东大学学报 (医学版), 2023, 61(1): 94-99.
[4] 况利,徐小明,曾琪. 机器学习用于自杀研究的综述[J]. 山东大学学报 (医学版), 2022, 60(4): 10-16.
[5] 姜震,孙静,邹雯,王唱唱,高琦. 基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究[J]. 山东大学学报 (医学版), 2022, 60(1): 101-108.
[6] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[7] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66.
[8] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81-87.
[9] 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16.
[10] 赵志凤. 舒适护理在骨科患者恢复期的应用[J]. 山东大学学报(医学版), 2014, 52(Z2): 174-174.
[11] 王志红, 谭思敏, 乐汉娥, 谢卫红, 芦敏慧, 刘文杰, 胡晓艳, 朱玉梅. 骨科无痛病房模式实施前后 护理人员的培训效果及患者满意度调查[J]. 山东大学学报(医学版), 2014, 52(Z2): 163-164.
[12] 付红英, 李克群, 宋振林, 岳敏. 损伤控制骨科在创伤骨科中的应用探讨[J]. 山东大学学报(医学版), 2014, 52(S2): 18-18.
[13] 王金广1,王莹2. 肩关节脱位并肘关节退变屈曲畸形手法复位1例[J]. 山东大学学报(医学版), 2013, 51(3): 111-112.
[14] 李旭,秦东京,曹新山,姜兴岳,张迪,王静. 无骨折脱位型颈脊髓损伤DTI征象与JOA评分的相关性[J]. 山东大学学报(医学版), 2013, 51(1): 83-87.
[15] 左灿辉,王鲁博,许世宏,董金磊,周东生. 计算机导航辅助下经关节突寰枢关节螺钉治疗齿状突骨折的临床研究[J]. 山东大学学报(医学版), 2012, 50(12): 103-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[3] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[4] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[5] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[6] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[9] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[10] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .