您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 21-28.doi: 10.6040/j.issn.1671-7554.0.2022.1125

• 专家综述 • 上一篇    下一篇

机器人/导航辅助下椎弓根螺钉植入在脊柱畸形矫正中的应用

刘新宇1,*(),李冬来1,赵文龙2,王政1,李超1,王连雷1,原所茂1,田永昊1   

  1. 1. 山东大学齐鲁医院骨科,山东 济南 250012
    2. 济南市第三人民医院骨科,山东 济南 250132
  • 收稿日期:2022-09-30 出版日期:2023-03-10 发布日期:2023-03-24
  • 通讯作者: 刘新宇 E-mail:newyuliu@163.com
  • 作者简介:刘新宇,医学博士、主任医师、教授、博士研究生导师,齐鲁卫生与健康领军人才,山东大学齐鲁医院骨科常务副主任、脊柱外科主任。兼任中华医学会骨科学分会微创外科学组委员、SICOT中国部微创外科学会副主任委员、山东省医学会骨科学分会候任主委、山东省医学会骨科分会微创学组组长等|从事脊柱外科临床及基础研究工作,擅长各类脊柱退行性疾病、脊柱畸形、脊柱创伤的诊治。主持国家自然科学基金3项。先后在《Spine》《European Spine Journal》《Journal of Neurosurgery Spine》等期刊以第一作者发表脊柱外科临床及基础研究论文80余篇,主编及参编著作7部,获国家专利5项

Robotics/navigation-assisted pedicle screw implantation in spinal deformity correction surgery

Xinyu LIU1,*(),Donglai LI1,Wenlong ZHAO2,Zheng WANG1,Chao LI1,Lianlei WANG1,Suomao YUAN1,Yonghao TIAN1   

  1. 1. Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
    2. Department of Orthopedics, The Third Hospital of Jinan, Jinan 250132, Shandong, China
  • Received:2022-09-30 Online:2023-03-10 Published:2023-03-24
  • Contact: Xinyu LIU E-mail:newyuliu@163.com

摘要:

手术机器人和导航系统是技术进步的成果,为脊柱外科的精准置钉带来了新的机遇。脊柱区解剖复杂,与许多重要的血管、神经毗邻,椎体旋转和变异、椎弓根狭窄、脊柱侧后凸等一系列的脊柱畸形对脊柱手术操作的精确度提出了更高的要求。传统脊柱手术十分依赖于术者的经验和术中判断,不能监测螺钉植入过程,所以螺钉误置率较高;机器人和导航系统在手术过程中可以提供实时的三维影像,协助脊柱外科医生及时调整螺钉位置和方向,提高了置钉的安全性和准确性,减小手术创伤和辐射暴露。然而,前期设备投入成本高昂、外科医生的学习曲线漫长以及患者的辐射暴露较多等问题仍然不可忽视。尽管远期矫形效果缺乏研究以及术中辐射暴露水平的不确定性,但机器人和导航系统已经影响了脊柱畸形矫治手术的方式和发展进程。

关键词: 机器人, 导航, 脊柱畸形, 辐射暴露, 置钉准确性

Abstract:

Surgical robotics and navigation systems are the results of technological advances that start a new approach for accurate insertion of the pedicle screw in spine surgery. The anatomical complexity of the spinal region and its proximity to many important blood vessels and nerves, spinal deformities such as vertebral body rotation and variation, narrow pedicle, kyphosis and scoliosis place higher demands on the accuracy of spine surgery. Free-hand placement of pedicle screws relies heavily on operators' experience and intraoperative judgment, but does not allow surgeons to monitor the process of insertion. As a result, the misplacement rate is high. The robotic and navigation systems can provide real-time, three-dimensional images during the operation. Thus, they can assist surgeons in adjusting screws promptly, improving the safety and accuracy of the operation and reducing surgical incision and radiation exposure. However, the expensive equipment costs, long learning curve and high radiation exposure for patients cannot be ignored. Despite the lack of research on long-term outcomes and the uncertainty of intraoperative radiation exposure, robotic and navigation systems have influenced the development of spinal deformity correction surgery.

Key words: Surgery robotics, Navigation, Spinal deformity, Radiation exposure, Accuracy of pedicle screw

中图分类号: 

  • R687.1
1 Bann S , Khan M , Hernandez J , et al. Robotics in surgery[J]. Am Coll Surg, 2003, 196 (5): 784- 795.
doi: 10.1016/S1072-7515(02)01750-7
2 Ahern DP , Gibbons D , Schroeder GD , et al. Image-guidance, robotics, and the future of spine surgery[J]. Clin Spine Surg, 2020, 33 (5): 179- 184.
3 Kochanski RB , Lombardi JM , Laratta JL , et al. Image-guided navigation and robotics in spine surgery[J]. Neurosurgery, 2019, 84 (6): 1179- 1189.
doi: 10.1093/neuros/nyy630
4 Devito DP , Woo R . History and evolution of spinal robotics in pediatric spinal deformity[J]. Int J Spine Surg, 2021, 15 (s2): S65- S73.
doi: 10.14444/8141
5 Ughwanogho E , Patel NM , Baldwin KD , et al. Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal[J]. Spine (Phila Pa 1976), 2012, 37 (8): E473- E478.
doi: 10.1097/BRS.0b013e318238bbd9
6 Sakai Y , Matsuyama Y , Yoshihara H , et al. Simultaneous registration with ct-fluoro matching for spinal navigation surgery. A case report[J]. Nagoya J Med Sci, 2006, 68 (1-2): 45- 52.
7 Macke JJ , Woo R , Varich L . Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population[J]. J Robot Surg, 2016, 10 (2): 145- 150.
doi: 10.1007/s11701-016-0587-7
8 施新革, 张永刚, 张雪松, 等. 术中CT导航在脊柱侧凸后路胸椎椎弓根螺钉植入术中的应用[J]. 中国修复重建外科杂志, 2012, 26 (12): 1415- 1419.
SHI Xinge , ZHANG Yonggang , ZHANG Xuesong , et al. Application of intraoperative CT navigation in osterior thoracic pedicle screw placement for scoliosis patients[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2012, 26 (12): 1415- 1419.
9 Sato T , Yonezawa I , Akimoto T , et al. Novel hump measurement system with a 3D camera for early diagnosis of patients with adolescent idiopathic scoliosis: a study of accuracy and reliability[J]. Cureus, 2020, 12 (5): e8229.
doi: 10.7759/cureus.8229
10 Kotani Y , Abumi K , Ito M , et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique[J]. Spine (Phila Pa 1976), 2007, 32 (14): 1543- 1550.
doi: 10.1097/BRS.0b013e318068661e
11 Liljenqvist UR , Halm HF , Link TM . Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis[J]. Spine (Phila Pa 1976), 1997, 22 (19): 2239- 2245.
doi: 10.1097/00007632-199710010-00008
12 Smith RM , Pool RD , Butt WP , et al. The transverse plane deformity of structural scoliosis[J]. Spine (Phila Pa 1976), 1991, 16 (9): 1126- 1129.
doi: 10.1097/00007632-199109000-00020
13 Lonstein JE , Denis F , Perra JH , et al. Complications associated with pedicle screws[J]. J Bone Joint Surg Am, 1999, 81 (11): 1519- 1528.
doi: 10.2106/00004623-199911000-00003
14 Kwan MK , Chiu CK , Gani SMA , et al. Accuracy and safety of pedicle screw placement in adolescent idiopathic scoliosis patients: a review of 2020 screws using computed tomography assessment[J]. Spine (Phila Pa 1976), 2017, 42 (5): 326- 335.
doi: 10.1097/BRS.0000000000001738
15 Waschke A , Walter J , Duenisch P , et al. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4, 500 screws[J]. Eur Spine J, 2013, 22 (3): 654- 660.
doi: 10.1007/s00586-012-2509-3
16 Chan A , Parent E , Wong J , et al. Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: a systematic review update and meta-analysis[J]. Eur Spine J, 2020, 29 (4): 694- 716.
doi: 10.1007/s00586-019-06219-3
17 Shin JH , Yanamadala V , Cha TD . Computer-assisted navigation for real time planning of redicle subtraction osteotomy in cervico-thoracic deformity correction[J]. Oper Neurosurg (Hagerstown), 2019, 16 (4): 445- 450.
doi: 10.1093/ons/opy162
18 Overley SC , Cho SK , Mehta AI , et al. Navigation and robotics in spinal surgery: where are we now?[J]. Neurosurgery, 2017, 80 (3S): S86- S99.
doi: 10.1093/neuros/nyw077
19 Ryang Y-M , Villard J , Obermüller T , et al. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine[J]. Spine J, 2015, 15 (3): 467- 476.
doi: 10.1016/j.spinee.2014.10.003
20 Berlin C , Quante M , Thomsen B , et al. Intraoperative radiation exposure for patients with double-curve idiopathic scoliosis in freehand-technique in comparison to fluoroscopic- and CT-based navigation[J]. Z Orthop Unfall, 2021, 159 (4): 412- 420.
doi: 10.1055/a-1121-8033
21 Simony A , Hansen EJ , Christensen SB , et al. Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously[J]. Eur Spine J, 2016, 25 (10): 3366- 3370.
doi: 10.1007/s00586-016-4747-2
22 Costa F , Tosi G , Attuati L , et al. Radiation exposure in spine surgery using an image-guided system based on intraoperative cone-beam computed tomography: analysis of 107 consecutive cases[J]. J Neurosurg Spine, 2016, 25 (5): 654- 659.
doi: 10.3171/2016.3.SPINE151139
23 Rajasekaran S , Bhushan M , Aiyer S , et al. Accuracy of pedicle screw insertion by AIRO intraoperative CT in complex spinal deformity assessed by a new classification based on technical complexity of screw insertion[J]. Eur Spine J, 2018, 27 (9): 2339- 2347.
doi: 10.1007/s00586-017-5453-4
24 Metz LN , Burch S . Computer-assisted surgical planning and image-guided surgical navigation in refractory adult scoliosis surgery: case report and review of the literature[J]. Spine (Phila Pa 1976), 2008, 33 (9): E287- E292.
doi: 10.1097/BRS.0b013e31816d256e
25 Zhang W , Takigawa T , Wu Y , et al. Accuracy of pedicle screw insertion in posterior scoliosis surgery: a comparison between intraoperative navigation and preoperative navigation techniques[J]. Eur Spine J, 2017, 26 (6): 1756- 1764.
doi: 10.1007/s00586-016-4930-5
26 Dabaghi Richerand A , Christodoulou E , Li Y , et al. Comparison of effective dose of radiation during pedicle screw placement using intraoperative computed tomography navigation versus fluoroscopy in children with spinal deformities[J]. J Pediatr Orthop, 2016, 36 (5): 530- 533.
doi: 10.1097/BPO.0000000000000493
27 Su AW , McIntosh AL , Schueler BA , et al. How does patient radiation exposure compare with low-dose O-arm versus fluoroscopy for pedicle screw placement in idiopathic scoliosis?[J]. J Pediatr Orthop, 2017, 37 (3): 171- 177.
doi: 10.1097/BPO.0000000000000608
28 Sensakovic WF , O'Dell MC , Agha A , et al. CT radiation dose reduction in robot-assisted pediatric spinal surgery[J]. Spine (Phila Pa 1976), 2017, 42 (7): E417- E424.
doi: 10.1097/BRS.0000000000001846
29 Hodges SD , Eck JC , Newton D . Analysis of CT-based navigation system for pedicle screw placement[J]. Orthopedics, 2012, 35 (8): e1221- e1224.
30 Flynn JM , Sakai DS . Improving safety in spinal deformity surgery: advances in navigation and neurologic monitoring[J]. Eur Spine J, 2013, (Suppl 2): S131- S137.
doi: 10.1007/soo586-012-2360-06
31 Urbanski W , Jurasz W , Wolanczyk M , et al. Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery[J]. Clin Orthop Relat Res, 2018, 476 (5): 1020- 1027.
doi: 10.1007/s11999.0000000000000204
32 Jin M , Liu Z , Qiu Y , et al. Incidence and risk factors for the misplacement of pedicle screws in scoliosis surgery assisted by O-arm navigation-analysis of a large series of one thousand, one hundred and forty five screws[J]. Int Orthop, 2017, 41 (4): 773- 780.
doi: 10.1007/s00264-016-3353-6
33 Bonnier L , Ayadi K , Vasdev A , et al. Three-dimensional reconstruction in routine computerized tomography of the skull and spine. Experience based on 161 cases[J]. J Neuroradiol, 1991, 18 (3): 250- 266.
34 Takahashi J , Ebara S , Hashidate H , et al. Computer-assisted hemivertebral resection for congenital spinal deformity[J]. J Orthop Sci, 2011, 16 (5): 503- 509.
doi: 10.1007/s00776-011-0134-3
35 Resnick DK . Prospective comparison of virtual fluoroscopy to fluoroscopy and plain radiographs for placement of lumbar pedicle screws[J]. J Spinal Disord Tech, 2003, 16 (3): 254- 260.
doi: 10.1097/00024720-200306000-00005
36 Devito DP , Kaplan L , Dietl R , et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study[J]. Spine (Phila Pa 1976), 2010, 35 (24): 2109- 2115.
doi: 10.1097/BRS.0b013e3181d323ab
37 陈豪杰, 朱贤友, 董亮, 等. 青少年特发性脊柱侧弯矫形术中机器人辅助置钉的研究[J]. 中国修复重建外科杂志, 2021, 35 (11): 1457- 1462.
CHEN Haojie , ZHU Xianyou , DONG Liang , et al. Study on robot-assisted pedicle screw implantation in adolescent idiopathic scoliosis surgery[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (11): 1457- 1462.
38 Smith AD . Scolisis[J]. J Bone Joint Surg Am, 1958, 40-A (3): 505- 507.
39 O'Brien MF , Lenke LG , Mardjetko S , et al. Pedicle morphology in thoracic adolescent idiopathic scoliosis: is pedicle fixation an anatomically viable technique?[J]. Spine (Phila Pa 1976), 2000, 25 (18): 2285- 2293.
doi: 10.1097/00007632-200009150-00005
40 Kotwicki T , Napiontek M . Intravertebral deformation in idiopathic scoliosis: a transverse plane computer tomographic study[J]. J Pediatr Orthop, 2008, 28 (2): 225- 229.
doi: 10.1097/BPO.0b013e3181647c4a
41 Liljenqvist U , Lepsien U , Hackenberg L , et al. Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis[J]. Eur Spine J, 2002, 11 (4): 336- 343.
doi: 10.1007/s00586-002-0415-9
42 Baldwin KD , Kadiyala M , Talwar D , et al. Does intraoperative CT navigation increase the accuracy of pedicle screw placement in pediatric spinal deformity surgery? A systematic review and meta-analysis[J]. Spine Deform, 2022, 10 (1): 19- 29.
doi: 10.1007/s43390-021-00385-5
43 Rafi S , Munshi N , Abbas A , et al. Comparative analysis of pedicle screw versus hybrid instrumentation in adolescent idiopathic scoliosis surgery[J]. J Neurosci Rural Pract, 2016, 7 (4): 550- 553.
doi: 10.4103/0976-3147.185510
44 Cheung KMC , Natarajan D , Samartzis D , et al. Predictability of the fulcrum bending radiograph in scoliosis correction with alternate-level pedicle screw fixation[J]. J Bone Joint Surg Am, 2010, 92 (1): 169- 176.
doi: 10.2106/JBJS.H.01831
45 Zhang Q , Xu YF , Tian W , et al. comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthop Surg, 2019, 11 (5): 850- 856.
doi: 10.1111/os.12534
46 Park Y , Ha JW , Lee YT , et al. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion[J]. Spine J, 2011, 11 (4): 295- 302.
doi: 10.1016/j.spinee.2011.02.007
47 Park P , Garton HJ , Gala VC , et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature[J]. Spine (Phila Pa 1976), 2004, 29 (17): 1938- 1944.
doi: 10.1097/01.brs.0000137069.88904.03
48 Misenhimer GR , Peek RD , Wiltse LL , et al. Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size[J]. Spine (Phila Pa 1976), 1989, 14 (4): 367- 372.
doi: 10.1097/00007632-198904000-00004
49 Sjöström L , Jacobsson O , Karlström G , et al. CT analysis of pedicles and screw tracts after implant removal in thoracolumbar fractures[J]. J Spinal Disord, 1993, 6 (3): 225- 231.
doi: 10.1097/00002517-199306030-00007
50 Jin M , Liu Z , Liu X , et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique[J]. Eur Spine J, 2016, 25 (6): 1729- 1737.
doi: 10.1007/s00586-015-4012-0
51 Wang M , Steele Ⅲ WJ , Urakov T . Advanced robotic spine surgery: a case-based approach (1st ed.)[J]. Boca Raton: CRC Press, 2021, 145- 158.
52 Kudo H , Wada K , Kumagai G , et al. Accuracy of pedicle screw placement by fluoroscopy, a three-dimensional printed model, local electrical conductivity measurement device, and intraoperative computed tomography navigation in scoliosis patients[J]. Eur J Orthop Surg Traumatol, 2021, 31 (3): 563- 569.
doi: 10.1007/s00590-020-02803-2
53 Lee M-H , Lin MH-C , Weng H-H , et al. Feasibility of intra-operative computed tomography navigation system for pedicle screw insertion of the thoraco-lumbar spine[J]. J Spinal Disord Tech, 2013, 26 (5): E183- E187.
doi: 10.1097/BSD.0b013e31828054c8
54 Nakanishi K , Tanaka M , Misawa H , et al. Usefulness of a navigation system in surgery for scoliosis: segmental pedicle screw fixation in the treatment[J]. Arch Orthop Trauma Surg, 2009, 129 (9): 1211- 1218.
doi: 10.1007/s00402-008-0807-3
55 Torii Y , Ueno J , Iinuma M , et al. The learning curve of robotic-assisted pedicle screw placements using the cumulative sum analysis: a study of the first 50 cases at a single center[J]. Spine Surg Relat Res, 2022, 6 (6): 589- 595.
doi: 10.22603/ssrr.2022-0049
56 Zhao Z , Liu Z , Hu Z , et al. Improved accuracy of screw implantation could decrease the incidence of post-operative hydrothorax? O-arm navigation vs. free-hand in thoracic spinal deformity correction surgery[J]. Int Orthop, 2018, 42 (9): 2141- 2146.
doi: 10.1007/s00264-018-3889-8
57 Tanaka M , Fujiwara Y , Uotani K , et al. C-arm-free anterior correction for adolescent idiopathic scoliosis (Lenke type 5C): analysis of early outcomes and complications[J]. World Neurosurg, 2021, 150, e561- e569.
doi: 10.1016/j.wneu.2021.03.060
58 Faraj AA , Webb JK . Early complications of spinal pedicle screw[J]. Eur Spine J, 1997, 6 (5): 324- 326.
doi: 10.1007/BF01142678
59 Pateder DB , Kostuik JP . Lumbar nerve root palsy after adult spinal deformity surgery[J]. Spine (Phila Pa 1976), 2005, 30 (14): 1632- 1636.
doi: 10.1097/01.brs.0000170292.87470.92
60 Gonzalez D , Ghessese S , Cook D , et al. Initial intraoperative experience with robotic-assisted pedicle screw placement with stealth navigation in pediatric spine deformity: an evaluation of the first 40 cases[J]. J Robot Surg, 2021, 15 (5): 687- 693.
doi: 10.1007/s11701-020-01159-3
61 Kim H , Kim HS , Moon ES , et al. Scoliosis imaging: what radiologists should know — erratum[J]. Radiographics, 2015, 35 (4): 1316.
62 Watanabe K , Lenke LG , Matsumoto M , et al. A novel pedicle channel classification describing osseous anatomy: how many thoracic scoliotic pedicles have cancellous channels?[J]. Spine (Phila Pa 1976), 2010, 35 (20): 1836- 1842.
doi: 10.1097/BRS.0b013e3181d3cfde
63 Meng XT , Guan XF , Zhang HL , et al. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis[J]. Neurosurg Rev, 2016, 39 (3): 385- 391.
doi: 10.1007/s10143-015-0679-2
64 Lee NJ , Zuckerman SL , Buchanan IA , et al. Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter, propensity-matched analysis of 2, 800 screws and 372 patients[J]. Spine J, 2021, 21 (9): 1504- 1512.
doi: 10.1016/j.spinee.2021.05.015
[1] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[2] 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133.
[3] 郭永园,孙厚义,张元凯,颜廷宾,刘培来,贾玉华. 鸿鹄机器人辅助全膝关节置换的早期学习曲线[J]. 山东大学学报 (医学版), 2023, 61(3): 115-120.
[4] 李超,孙小刚,李昊,田永昊,原所茂,刘新宇,王连雷. 机器人联合三维“C”型臂辅助置钉在44例脊柱侧弯矫形术中的应用价值[J]. 山东大学学报 (医学版), 2023, 61(3): 107-114.
[5] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[6] 杜付鑫,张体冲,李倩倩,宋锐. 脊柱手术机器人研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 46-56.
[7] 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13.
[8] 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106.
[9] 乔桦,李慧武. 膝关节置换手术机器人应用现状与研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 29-36.
[10] 李希,王秉翔,李娜,曹丽娜,李爱华,冠潇,张志勉. 下肢外骨骼机器人康复训练对脑卒中偏瘫患者下肢运动的影响[J]. 山东大学学报 (医学版), 2023, 61(3): 121-126.
[11] 马良,张元凯,姜淑伟. 便携式导航与传统手术器械下的20例全膝关节置换术后早期疗效随访对比[J]. 山东大学学报 (医学版), 2022, 60(6): 75-81.
[12] 匡风霞,赵晓虹,韩宝佳,高成杰. 对控制机器人甲状腺癌根治术患者手术应激反应麻醉深度的探讨[J]. 山东大学学报 (医学版), 2022, 60(5): 81-86.
[13] 田辉,易文波,李树海. 达芬奇机器人食管癌切除术之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 28-32.
[14] 庄大勇,贺青卿,李小磊,周鹏,岳涛,徐婧. 达芬奇机器人在儿童及青少年甲状腺癌中的应用[J]. 山东大学学报 (医学版), 2021, 59(1): 45-48.
[15] 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[4] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[5] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[8] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[9] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .