您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 74-84.doi: 10.6040/j.issn.1671-7554.0.2022.0429

• 基础医学 • 上一篇    下一篇

IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移

张振伟1,李佳2,陈克明1   

  1. 1.济南市第三人民医院泌尿外科, 山东 济南 250132;2.山东第一医科大学附属肿瘤医院腹部放疗二病区, 山东 济南 250117
  • 发布日期:2022-09-02
  • 通讯作者: 张振伟. E-mail:zzw1839@163.com

IGF2BP2/m6A/ITGA5 signal axis regulates the proliferation and migration of renal clear cells

ZHANG Zhenwei1, LI Jia2, CHEN Keming1   

  1. 1. Department of Urology, Jinan Third Peoples Hospital, Jinan 250132, Shandong, China;
    2. Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
  • Published:2022-09-02

摘要: 目的 探讨N6-甲基腺嘌呤(m6A)“识别蛋白”胰岛素样生长因子2 mRNA结合蛋白2(IGF2BP2)在肾透明细胞癌(ccRCC)中的潜在作用。 方法 通过分析癌症基因数据库(TCGA)、采用qRT-PCR法和Western blotting法检测IGF2BP2在肾癌中的表达水平,甲基化RNA免疫沉淀qPCR结合生物信息学鉴定整合素α5(ITGA5)mRNA的m6A修饰。采用基因敲低/过表达技术,采用qRT-PCR和Western blotting法检测IGF2BP2对ITGA5表达调控的作用。通过功能性获得和缺失实验确定IGF2BP2和ITGA5对肾癌细胞增殖和迁移的调控。 结果 TCGA肾癌数据库显示,IGF2BP2在肾癌组织中高表达。同时高表达的IGF2BP2不利于患者的整体生存期(HR=1.6,P=0.005)和无病生存期(HR=1.9,P=0.014)。qRT-PCR法以及Western blotting法检测结果显示,IGF2BP2在肾癌组织中高表达。Western blotting检测结果显示,正常肾上皮细胞中IGF2BP2的表达低于其他几种肾癌细胞系。基因集合富集分析(GSEA)发现ITGA5可能是IGF2BP2下游靶分子。进一步通过敲除或者过表达发现,IGF2BP2在转录后水平调控ITGA5。甲基化RNA免疫沉淀qPCR发现ITGA5在3'UTR区存在m6A修饰化位点,低m6A修饰可能有助于维持其mRNA的稳定性。 结论 IGF2BP2在肾透明细胞癌中高表达;IGF2BP2不利于肾癌患者的生存预后;IGF2BP2/ m6A/ ITGA5信号轴调控肾癌细胞的增殖、迁移和血管新生。

关键词: 肾透明细胞癌, 胰岛素样生长因子2 mRNA结合蛋白2, N6甲基腺苷, 增殖, 迁移, 血管新生

Abstract: Objective To explore the potential role of m6A “recognition protein” insulin-like growth factor 2 mRNA binding protein(IGF2BP2)in clear cell renal cell carcinoma(ccRCC). Methods The expression of IGF2BP2 in ccRCC was searched in cancer gene database TCGA and analyzed with qRT-PCR and Western blotting. The m6A modification of ITGA5 mRNA was identified with methylated RNA immunoprecipitation qPCR combined with bioinformatics. IGF2BP2 on the regulation of ITGA5 expression was detected with gene knockdown/overexpression experiments, qRT-PCR and Western blotting. The biological roles of IGF2BP2 and ITGA5 in ccRCC cells were determined with gain- and loss-of-function experiments. Results Data from TCGA showed that IGF2BP2 was highly expressed in ccRCC, while the high expression was not conducive to the overall survival(HR=1.6, P=0.005)and disease-free survival(HR=1.9, P=0.014). Western blotting and qRT-PCR also indicated that IGF2BP2 was highly expressed. Western blotting revealed that IGF2BP2 expression was significantly higher in ccRCC cell lines than in normal renal epithelial cells. Gene set enrichment analysis(GSEA)showed that ITGA5 might be a downstream target of IGF2BP2. Further knockdown or overexpression suggested that IGF2BP2 regulated ITGA5 at the post-transcriptional level. Methylated RNA immunoprecipitation qPCR showed that m6A modification sites were in the 3'UTR region of ITGA5, and low m6A modifications helped to maintain the stability of mRNA. Conclusion IGF2BP2 is upregulated in ccRCC, which is unfavorable for the prognosis and survival. IGF2BP2/m6A/ITGA5 signal axis regulates the proliferation, migration and angiogenesis in ccRCC.

Key words: Clear cell renal cell carcinoma, Insulin-like growth factor 2 mRNA binding protein, N6-methyladenosine, Proliferation, Migration, Angiogenesis

中图分类号: 

  • R737.1
[1] Linehan WM, Ricketts CJ. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications[J]. Nat Rev Urol, 2019, 16(9): 539-552.
[2] Czyzyk-krzeska MF, Meller J, Landero FJ, et al. Metabolic subtypes of clear cell renal cell carcinoma defined by tobacco smoking[J]. Mol Cell Oncol, 2021, 8(2):1859917.
[3] Wettersten HI, Aboud OA, Lara PJ, et al. Metabolic reprogramming in clear cell renal cell carcinoma[J]. Nat Rev Nephrol, 2017, 13(7): 410-419.
[4] Zheng Q, Li P, Zhou X, et al. Deficiency of the X-inactivation escaping gene KDM5C in clear cell renal cell carcinoma promotes tumorigenicity by reprogramming glycogen metabolism and inhibiting ferroptosis[J]. Theranostics, 2021, 11(18): 8674-8691.
[5] Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10): 4766-4781.
[6] Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation[J]. Oncogene, 2020, 39(23): 4507-4518.
[7] Shen S, Zhang R, Jiang Y, et al. Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types[J]. Mol Cancer, 2021, 20(1): 67.
[8] Song P, Feng L, Li J, et al. beta-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer[J]. Mol Cancer, 2020, 19(1): 129.
[9] Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation[J]. Nucleic Acids Res, 2020, 48(7): 3816-3831.
[10] Hou G, Zhao X, Li L, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs[J]. Nucleic Acids Res, 2021, 49(5): 2859-2877.
[11] Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-Methyladenosine RNA demethylase[J]. Cancer Cell, 2017,31(1): 127-141.
[12] Huang H, Wang Y, Kandpal M, et al. FTO-dependent N(6)-Methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling[J]. Cancer Res, 2020, 80(16): 3200-3214.
[13] Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development[J]. PLoS Genet, 2018, 14(5): e1007412.
[14] Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation[J]. Cell Rep, 2018, 25(7): 1816-1828.
[15] Fustin JM, Kojima R, Itoh K, et al. Two Ck1delta transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock[J]. Proc Natl Acad Sci U S A, 2018, 115(23): 5980-5985.
[16] Yu F, Wei J, Cui X, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response[J]. Nucleic Acids Res, 2021, 49(10): 5779-5797.
[17] Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10): 4766-4781.
[18] Kumar S, Nagpal R, Kumar A, et al. Immunotherapeutic potential of m6A-Modifiers and microRNAs in controlling acute myeloid leukaemia[J]. Biomedicines, 2021, 9(6): 690.
[19] Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation[J]. Oncogene, 2020, 39(23): 4507-4518.
[20] Du J, Ji H, Ma S, et al. m6A regulator-mediated methylation modification patterns and characteristics of immunity and stemness in low-grade glioma[J]. Brief Bioinform, 2021, 22(5): bbab013.
[21] Dixit D, Prager BC, Gimple RC, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells[J]. Cancer Discov, 2021, 11(2): 480-499.
[22] Zhao H, Xu Y, Xie Y, et al. m6A Regulators is differently expressed and correlated with immune response of esophageal cancer[J]. Front Cell Dev Biol, 2021, 9: 650023.
[23] Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(9): 1098.
[24] Zhang H, Shi X, Huang T, et al. Dynamic landscape and evolution of m6A methylation in human[J]. Nucleic Acids Res, 2020, 48(11): 6251-6264.
[25] Ban Y, Tan P, Cai J, et al. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma[J]. Mol Oncol, 2020, 14(6): 1282-1296.
[26] Paris J, Morgan M, Campos J, et al. Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia[J]. Cell Stem Cell, 2019, 25(1): 137-148.
[27] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3): 209-249.
[28] Schmidt LS, Linehan WM. Genetic predisposition to kidney cancer[J]. Semin Oncol, 2016, 43(5): 566-574.
[29] Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188522.
[30] Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3): 270-288.
[31] Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65(2): 529-543.
[32] Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6): 2254-2270.
[33] Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing[J]. EMBO Rep, 2010, 11(2): 97-105.
[34] Zhang L, Wan Y, Zhang Z, et al. IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression[J]. Theranostics, 2021, 11(3): 1100-1114.
[35] Li H, Zhang Y, Guo Y, et al. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation[J]. Biochem Pharmacol, 2021,189: 114284.
[36] Li B, Zhu L, Lu C, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity[J]. Nat Commun, 2021, 12(1): 295.
[37] Ying Y, Ma X, Fang J, et al. EGR2-mediated regulation of m(6)A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization[J]. Cell Death Dis, 2021, 12(8): 750.
[38] Deng X, Su R, Weng H et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives[J]. Cell Res, 2018, 28(5): 507-517.
[39] Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295.
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[3] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[4] 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37.
[5] 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26.
[6] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[7] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[8] 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154.
[9] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[10] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
[11] 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33.
[12] 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47.
[13] 柴小雪,叶辉,吕欣然,丁续超,甄秋来,杜娟,曹莉莉. POU4F3表达对118例肺腺癌患者预后评估及对肺腺癌细胞株迁移的影响[J]. 山东大学学报 (医学版), 2021, 59(11): 8-18.
[14] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[15] 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[6] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[7] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .