您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 67-73.doi: 10.6040/j.issn.1671-7554.0.2022.0686

• 基础医学 • 上一篇    下一篇

6例非酒精性脂肪性肝病小鼠肠道B细胞的变化

张凤,吴哲,徐俊,刘玉兰   

  1. 北京大学人民医院消化内科, 北京 100044
  • 发布日期:2022-09-02
  • 通讯作者: 刘玉兰. E-mail:liuyulan@pkuph.edu.cn
  • 基金资助:
    国家自然科学基金(81470798,81800516)

Changes of intestinal B lymphocytes in 6 mice with non-alcoholic fatty liver disease

ZHANG Feng, WU Zhe, XU Jun, LIU Yulan   

  1. Department of Gastroenterology, Peking University Peoples Hospital, Beijing 100044, China
  • Published:2022-09-02

摘要: 目的 探索非酒精性脂肪性肝病(NAFLD)小鼠肠道B细胞的变化。 方法 将12只雄性C57BL/6J小鼠随机分为实验组和对照组,每组6只。实验组喂以45%高脂肪饮食诱导发生NAFLD,对照组喂以正常饮食。16周后处死小鼠,留取两组肝脏、小肠黏膜、结肠黏膜、肠系膜淋巴结(MLN)、派氏结(PP)及小肠内容物。采用苏木精-伊红染色法确认实验组发生NAFLD,采用免疫组织化学染色法及实时定量PCR法检测小肠及结肠黏膜中B细胞的分布和含量。采用流式细胞术分析MLN和PP中B细胞比例。采用酶联免疫法检测小肠内容物sIgA的水平。采用免疫磁珠法分选MLN中的B细胞进行体外培养,加入脂多糖(LPS)或抗CD40和抗IgM(BCR)刺激,采用细胞因子流式技术法检测培养液上清白介素-6、白介素-10及肿瘤坏死因子-α的水平。 结果 实验组和对照组小肠及结肠的B细胞散在分布于固有层中。与对照组相比,实验组MLN和PP中B细胞比例增多(PMLN-B细胞=0.025,PPP-B细胞=0.004)。实验组小肠内容物中sIgA的含量较对照组明显升高(P=0.042),并且其PP中IgA+B细胞比例升高(P=0.023)。体外实验显示,实验组MLN中的B细胞接受刺激后分泌IL-6增多(PLPS<0.001,PBCR=0.003)。 结论 NAFLD小鼠PP及MLN中B细胞比例增多,不仅小肠内sIgA含量增多,并且其MLN中B细胞接受刺激后分泌促炎性IL-6增多。

关键词: 非酒精性脂肪性肝病, B细胞, 肠道, 肠肝轴, 炎症因子

Abstract: Objective To investigate the changes of intestinal B lymphocytes in mice with non-alcoholic fatty liver disease(NAFLD)induced by high fat diet. Methods A total of 12 male C57BL/6J mice were randomly divided into the experimental group and control group, with 6 in either group. The experimental group was fed with 45% high fat diet, while the control group with normal diet. After 16 weeks, the mice were killed to collect liver, small intestine mucosa, colon mucosa, mesenteric lymph nodes(MLN), Peyers patches(PP)and small intestine contents. Hepatic steatosis in experimental group was confirmed with hematoxylin and eosin(HE)staining. The distribution and expression of B cells in small intestine and colon mucosa were detected with immunohistochemical staining and real-time quantitative PCR, respectively. Proportion of B and T lymphocytes in the MLN and PP were analyzed with flow cytometry. The sIgA level in the small intestinal contents was detected with enzyme linked immunosorbent assay(ELISA). B lymphocytes were enriched with a magnetic-activated cell sorting method and cultured in vitro with or without the stimulation of lipopolysaccharide(LPS)or anti-CD40/IgM(BCR). The levels of IL-6, IL-10 and TNF-α in the cultural supernatants were monitored with cytometric bead arrays(CBA). Results B lymphocytes scattered throughout the lamina in both groups. The proportion of B lymphocytes was increased significantly in MLN and PP in experimental group than in control group(PMLN-B=0.025, PPP-B=0.004). The experimental group had higher level of sIgA in the small intestinal contents(P=0.042), which was in line with the higher proportion of IgA+ B lymphocytes in the PP(P=0.023). B lymphocytes in MLN in the experimental group secreted more IL-6 upon the stimulation of LPS or anti-CD40/IgM(BCR)(PLPS<0.001, PBCR=0.003)than in the control group. Conclusion Proportion of B lymphocytes in PP and MLN increased significantly in NAFLD mice. Small intestine secreted higher level of sIgA, and B lymphocytes in MLN produced more IL-6 upon stimulation in NAFLD mice.

Key words: Non-alcoholic fatty liver disease, B lymphocyte, Gut, Gut-liver axis, Inflammatory cytokine

中图分类号: 

  • R575
[1] Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682.
[2] Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia[J]. J Hepatol, 2017, 67(4): 862-873.
[3] Zhu J, Xu D, Yang R, et al. The triglyceride glucose index(TyG)and CDKAL1 gene rs10946398 SNP are associated with NAFLD in Chinese adults[R]. Minerva Endocrinol, 2020. doi: 10.23736/S0391-1977.20.03273-3.
[4] Day CP, James OF. Steatohepatitis: a tale of two “hits” ?[J]. Gastroenterology, 1998, 114(4): 842-845.
[5] Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846.
[6] Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71.
[7] Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci, 2019, 20(2): E395.
[8] Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad[J]. Scand J Gastroenterol, 2017, 52(11): 1185-1193.
[9] Tourkochristou E, Triantos C, Mouzaki A. The influence of nutritional factors on immunological outcomes[J]. Front Immunol, 2021, 12: 665968. doi: 10.3389/fimmu.2021.665968.
[10] Marshall JC. The gut as a potential trigger of exercise-induced inflammatory responses[J]. Can J Physiol Pharmacol, 1998, 76(5): 479-484.
[11] Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota[J]. Gastroenterol Rep(Oxf), 2019, 7(1): 3-12.
[12] Volynets V, Küper MA, Strahl S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease(NAFLD)[J]. Dig Dis Sci, 2012, 57(7): 1932-1941.
[13] Briskey D, Heritage M, Jaskowski LA, et al. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2016, 9(4): 463-472.
[14] Castoldi A, Favero de Aguiar C, Moraes-Vieira PM, et al. They must hold tight: junction proteins, microbiota and immunity in intestinal mucosa[J]. Curr Protein Pept Sci, 2015, 16(7): 655-671.
[15] Jiang W, Wu N, Wang X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease[J]. Sci Rep, 2015, 5: 8096. doi: 10.1038/srep08096.
[16] Ferro D, Baratta F, Pastori D, et al. New insights into the pathogenesis of non-alcoholic fatty liver disease: gut-derived lipopolysaccharides and oxidative stress[J]. Nutrients, 2020, 12(9): E2762.
[17] Kolodziejczyk AA, Zheng D, Shibolet O, et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Mol Med, 2019, 11(2): e9302.
[18] Mörbe UM, Jrgensen PB, Fenton TM, et al. Human gut-associated lymphoid tissues(GALT); diversity, structure, and function[J]. Mucosal Immunol, 2021, 14(4): 793-802.
[19] Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease[J]. Front Immunol, 2012, 3: 310. doi: 10.3389/fimmu.2012.00310.
[20] Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin a: microbe-binding biomolecules that contribute to mucosal immunity in the human gut[J]. Crit Rev Biochem Mol Biol, 2017, 52(1): 45-56.
[21] Mohamad Nor MH, Ayob N, Mokhtar NM, et al. The effect of probiotics(MCP® BCMC® strains)on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease[J]. Nutrients, 2021, 13(9): 3192.
[22] Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin a coating identifies colitogenic bacteria in inflammatory bowel disease[J]. Cell, 2014, 158(5): 1000-1010.
[23] Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease(NAFLD)- pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211.
[24] Akbari R, Behdarvand T, Afarin R, et al. Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis[J]. BMC Pharmacol Toxicol, 2021, 22(1): 53.
[25] Van Herck MA, Weyler J, Kwanten WJ, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity[J]. Front Immunol, 2019, 10: 82. doi: 10.3389/fimmu.2019.00082.
[26] Winer DA, Winer S, Shen L, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies[J]. Nat Med, 2011, 17(5): 610-617.
[27] DeFuria J, Belkina AC, Jagannathan-Bogdan M, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile[J]. PNAS, 2013, 110(13): 5133-5138.
[1] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[2] 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18.
[3] 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81.
[4] 张薇薇,华芳,梁超帅,褚苗苗,孙嘉忆,Frank Zaucke,辛玮. 促甲状腺激素通过抗炎蛋白CTRP3促进软骨细胞分化[J]. 山东大学学报 (医学版), 2022, 60(10): 1-8.
[5] 关恒云,王春荣,刘岚铮,赵怀龙,白爱英,姜慧钰,董华,李娜,单晓英,成洪旗. 济南市2012~2017年手足口病4种优势肠道病毒阳性及VP1基因型分布[J]. 山东大学学报 (医学版), 2021, 59(5): 60-67.
[6] 韩晓婷,于霞,董来慧,纳莉,牛艳玲,赵君利. 月见草油对肥胖型不孕女性代谢及肠道菌群的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 48-54.
[7] 李潘,李月月,李延青. 个体化肠道准备对肠道准备质量的影响[J]. 山东大学学报 (医学版), 2020, 58(3): 113-117.
[8] 胡昭,王强. 新型冠状病毒感染相关性肾损伤[J]. 山东大学学报 (医学版), 2020, 58(3): 26-31.
[9] 张召义,韩婷,孙艳萍,李波. 聚乙二醇电解质散在40例妇科腹腔镜术前肠道准备中的应用[J]. 山东大学学报 (医学版), 2020, 58(2): 49-53.
[10] 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53.
[11] 杨张杰,王宇欣,陈冬梅,赵帅,虎娜,马良宏,马会明. 枸杞籽油对小鼠睾丸支持细胞衰老模型的抗炎作用[J]. 山东大学学报 (医学版), 2020, 58(12): 15-22.
[12] 吕晨箫,李洋,高颖,张群业,张磊,王尊松. 慢性肾脏病5期患者的肠道菌群变化[J]. 山东大学学报 (医学版), 2019, 57(7): 72-79.
[13] 娄福臣,刘性祥,马国云,庄向华. 阿卡波糖对冠心病合并糖耐量受损患者YKL-40和肠道菌群的影响[J]. 山东大学学报 (医学版), 2019, 57(7): 86-91.
[14] 王国云,袁明,姬苗苗. 子宫内膜异位症发病机制研究进展[J]. 山东大学学报 (医学版), 2019, 57(6): 33-39.
[15] 关恒云,王春荣,刘岚铮,杨国樑,赵怀龙,孙洁,成洪旗. 济南市2012~2017年手足口病肠道病毒谱变化及流行特征[J]. 山东大学学报 (医学版), 2019, 57(11): 90-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .