山东大学学报 (医学版) ›› 2025, Vol. 63 ›› Issue (3): 110-116.doi: 10.6040/j.issn.1671-7554.0.2024.1044
• 公共卫生与预防医学 • 上一篇
李欣怡1,张骁驰1,李文1,高杉杉2,3,赵琦1,张玮4
LI Xinyi1, ZHANG Xiaochi1, LI Wen1, GAO Shanshan2,3, ZHAO Qi1, ZHANG Wei4
摘要: 目的 研究热浪(heat wave, HW)与6~18岁人群(学龄人群)其他感染性腹泻(other infectious diarrhea, OID)发病之间的关联,并评估城市化水平的修饰作用,为制定学龄人群OID防控措施提供科学依据。 方法 收集2018—2022年山东学龄人群每日OID发病病例、同期气象和城市化指标(人均GDP、常住人口城镇化率以及人均医疗机构床位数)数据;研究时段设为每年5~10月;以每个城市日平均气温的第90和95百分位数为阈值、以持续至少3 d为必要条件定义2种HW(HW1和HW2)。基于山东省的时间序列数据,使用结合分布滞后非线性模型的准泊松回归探索HW与OID发病的关联,并通过交互项量化3个城市化指标对HW效应的修饰作用。 结果 研究期间内,山东省学龄人群累计报告OID 35 929例。与非HW日相比,HW1 和 HW2 的效应分别在暴露的当天(lag0)和第2天(lag2)达到峰值,相对危险度分别为 1.05(95%CI: 1.02~1.09)和 1.08(95%CI: 1.05~1.11)。在整个滞后期(15 d),HW1 和 HW2的累积相对危险度值分别为 1.62(95%CI: 1.37~1.92)和 1.93(95%CI: 1.47~2.53)。常住人口城镇化率和人均GDP低的地区与HW相关的OID发病风险更高。 结论 HW与学龄人群OID的发病显著关联,城市化水平是强修饰因子。
中图分类号:
| [1] 汤家炜, 汤其宁, 朱时雨, 等. 2015—2019年中国法定传染病发病趋势分析[J]. 医学动物防制, 2024, 40(1): 4-7. TANG Jiawei, TANG Qining, ZHU Shiyu, et al. Analysis of the incidence trend of notifiable infectious diseases in China from 2015 to 2019[J]. Journal of Medical Pest Control, 2024, 40(1): 4-7. [2] Wang HT, Jiang BF, Zhao Q, et al. Temperature extremes and infectious diarrhea in China: attributable risks and effect modification of urban characteristics[J]. Int J Biometeorol, 2023, 67(10): 1659-1668. [3] 郝强. 气象因素对其他感染性腹泻发病的影响及预测预警研究[D]. 济南: 山东大学, 2022. [4] Zhang XZ, Wang YM, Zhang WZ, et al. The effect of temperature on infectious diarrhea disease: a systematic review[J]. Heliyon, 2024, 10(11): e31250. doi:10.1016/j.heliyon.2024.e31250 [5] 任婧寰, 王锐. 2017—2021年我国其他感染性腹泻突发公共卫生事件流行特征分析[J]. 热带病与寄生虫学, 2023, 21(1): 1-6. REN Jinghuan, WANG Rui. Epidemiological characteristics of public health emergencies caused by other infectious diarrhea in China from 2017 to 2021[J]. Journal of Tropical Diseases and Parasitology, 2023, 21(1): 1-6. [6] Wang P, Luo M, Liao WL, et al. Urbanization contribution to human perceived temperature changes in major urban agglomerations of China[J]. Urban Clim, 2021, 38: 100910. doi:10.1016/j.uclim.2021.100910 [7] Anugwom EE, Anugwom KN. Urbanization and the epidemiology of infectious diseases: towards the social framing of global responses[M] //Integrated Science of Global Epidemics. Cham: Springer International Publishing, 2023: 307-328. doi:10.1007/978-3-031-17778-1_13 [8] 梁敏仪, 张敏怡, 范顺昌, 等. 气温与湿度对深圳市龙华区0~5岁儿童其他感染性腹泻发病的影响研究[J]. 热带医学杂志, 2023, 23(12): 1759-1764. LIANG Minyi, ZHANG Minyi, FAN Shunchang, et al. The influence of temperature and humidity on the incidence of other infectious diarrhea in children aged 0-5 years in Longhua district, Shenzhen[J]. Journal of Tropical Medicine, 2023, 23(12): 1759-1764. [9] 刘世科,孙家盛,章海斌,等.分布滞后非线性模型评估浙江省宁海县气温对0~6岁儿童其他感染性腹泻的发病影响[J].疾病监测, 2022, 37(12): 1563-1568. LIU Shike, SUN Jiasheng, ZHANG Haibin, et al. Evaluation of effect of ambient temperature on other infectious diarrhea incidence in children aged 0-6 years in Ninghai by distributed lag nonlinear model [J]. Dis Surveill, 2022, 37(12): 1563-1568. [10] Yang Y, Zhao N. Vulnerability assessment of urban agglomerations to the risk of heat waves in China since the 21st century[J]. Environ Pollut, 2023, 336: 122443. doi:10.1016/j.envpol.2023.122443 [11] 山东省统计局. 山东省统计年鉴 [M]. 北京: 中国统计出版社, 2018-2022. [12] Sun XM, Sun Q, Zhou XF, et al. Heat wave impact on mortality in Pudong new area, China in 2013[J]. Sci Total Environ, 2014, 493: 789-794. doi:10.1016/j.scitotenv.2014.06.042 [13] 谢盼, 王仰麟, 彭建, 等. 基于居民健康的城市高温热浪灾害脆弱性评价: 研究进展与框架[J]. 地理科学进展, 2015, 34(2): 165-174. XIE Pan, WANG Yanglin, PENG Jian, et al. Health related urban heat wave vulnerability assessment: research progress and framework[J]. Progress in Geography, 2015, 34(2): 165-174. [14] Yang J, Yin P, Sun JM, et al. Heatwave and mortality in 31 major Chinese Cities: definition, vulnerability and implications[J]. Sci Total Environ, 2019, 649: 695-702. doi:10.1016/j.scitotenv.2018.08.332 [15] 牛彦麟, 杨军, 林华亮, 等. 高温热浪对北京市居民死亡影响附加效应[J]. 中国公共卫生, 2022, 38(3): 344-350. NIU Yanlin, YANG Jun, LIN Hualiang, et al. Added effect of heat waves on mortality in residents of Beijing, 2007—2013[J]. Chinese Journal of Public Health, 2022, 38(3): 344-350. [16] 王琳琳. 2010-2019年桐城市昼夜温差和平均气温与其他感染性腹泻发病风险的关联性研究[D]. 合肥: 安徽医科大学, 2023。 [17] 段瑶, 李昱颖, 胡文琦, 等. 2011—2013年广州市热浪与感染性腹泻发病关系的初步研究[J]. 环境与健康杂志, 2019, 36(11): 1003-1006. UAN Yao, LI Yuying, HU Wenqi, et al. Relationship between heat wave and incidence of infectious diarrhea in Guangzhou, 2011-2013[J]. Journal of Environment and Health, 2019, 36(11): 1003-1006. [18] Zheng H, Wang QQ, Fu JG, et al. Geographical variation in the effect of ambient temperature on infectious diarrhea among children under 5 years[J]. Environ Res, 2023, 216(Pt 1): 114491. doi:10.1016/j.envres.2022.114491 [19] 刘志东. 归因于暴雨洪涝的感染性腹泻疾病负担评价及预估研究[D]. 济南: 山东大学, 2016. [20] Altman D G, Martin Bland J. Interaction revisited: the difference between two estimates[J]. BMJ, 2003, 326(7382): 219. doi:10.1136/bmj.326.7382.219 [21] IPCC. Climate Change 2023 Synthesis Report [R]. Switzerland: IPCC, 2023. [22] UNICEF. 559 million children currently exposed to high heatwave frequency, rising to all 2.02 billion children globally by 2050 [Z]. LONDON/NEW YORK. 2022. doi: 10.3390/ijerph192215127 [23] 张静. 2014-2016年降水和温度对北京市其他感染性腹泻的影响[D]. 济南: 山东大学, 2019. doi: 10.1186/s12962-023-00461-9 [24] u ZW, Liu Y, Ma ZW, et al. Assessment of the temperature effect on childhood diarrhea using satellite imagery[J]. Sci Rep, 2014, 4: 5389. doi:10.1038/srep05389 [25] Huang NN, Zheng H, Li B, et al. The short-term effects of temperature on infectious diarrhea among children under 5 years old in Jiangsu, China: a time-series study(2015-2019)[J]. Curr Med Sci, 2021, 41(2): 211-218. [26] Zhou XD, Zhou YB, Chen RJ, et al. High temperature as a risk factor for infectious diarrhea in Shanghai, China[J]. J Epidemiol, 2013, 23(6): 418-423. [27] 苏通,赵文娜,刘莹莹,等. 河北省日平均气温对其他感染性腹泻发病的影响[J]. 中华传染病杂志, 2022, 40(3): 159-164. SU Tong, ZHAO Wenna, LIU Yingying, et al. Effects of daily mean temperature on the incidence of other infectious diarrhea in Hebei Province[J]. Chinese Journal of Infectious Diseases, 2022, 40(3): 159-164. [28] Bentham G, Langford IH. Environmental temperatures and the incidence of food poisoning in England and Wales[J]. Int J Biometeorol, 2001, 45(1): 22-26. [29] 刘重程, 唐雅清, 王瑞琴, 等. 气象因素与北京市昌平区其他感染性腹泻发病相关性研究[J]. 首都公共卫生, 2017, 11(2): 75-76. LIU Zhongcheng, TANG Yaqing, WANG Ruiqin, et al. Analysis on the correlation between meteorological factors and infectious diarrhea in Changping district, Beijing[J]. Capital Journal of Public Health, 2017, 11(2): 75-76. [30] Fang XY, Ai J, Liu WD, et al. Epidemiology of infectious diarrhoea and the relationship with etiological and meteorological factors in Jiangsu Province, China[J]. Sci Rep, 2019, 9(1): 19571. doi:10.1038/s41598-019-56207-2 [31] 张隆垚, 路珊珊, 官锦兴, 等. 新型冠状病毒感染对苏州市法定传染病流行的影响分析[J]. 中华疾病控制杂志, 2024, 28(10): 1196-1203. ZHANG Longyao, LU Shanshan, GUAN Jinxing, et al. Analysis of the impact of COVID-19 on the prevalence of notifiable infectious diseases in Suzhou[J]. Chinese Journal of Disease Control & Prevention, 2024, 28(10): 1196-1203. [32] 蔡靖靖, 栾荣生. 2017—2022年四川省法定传染病流行特征分析[J]. 现代预防医学, 2023, 50(9): 1566-1571. CAI Jingjing, LUAN Rongsheng. Epidemiological characteristics of notifiable infectious disease in Sichuan Province from 2017 to 2022[J]. Modern Preventive Medicine, 2023, 50(9): 1566-1571. [33] Liu ZD, Zhang FF, Zhang Y, et al. Association between floods and infectious diarrhea and their effect modifiers in Hunan province, China: a two-stage model[J]. Science of The Total Environment, 2018, 626: 630-637. doi: 10.1016/j.scitotenv.2018.01.130 [34] Guo YM, Gasparrini A, Armstrong BG, et al. Heat wave and mortality: a multicountry, multicommunity study[J]. Environ Health Perspect, 2017, 125(8): 087006. doi:10.1289/EHP1026 [35] Jay O, Capon A, Berry P, et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities[J]. Lancet, 2021, 398(10301): 709-724. [36] Tong MX, Hansen A, Hanson-Easey S, et al. Infectious diseases, urbanization and climate change: challenges in future China[J]. Int J Environ Res Public Health, 2015, 12(9): 11025-11036. |
| [1] | 肖长春,余林玲,鄢德瑞,朱昱. 合肥市空气O3对儿童呼吸系统疾病急诊就诊量的影响[J]. 山东大学学报 (医学版), 2025, 63(2): 95-103. |
| [2] | 钱凤同,李洪凯,于金龙,薛付忠. 抗菌药物使用密度与肺炎克雷伯菌耐药率的因果关联及药物控制阈值[J]. 山东大学学报 (医学版), 2024, 62(5): 103-111. |
| [3] | 刘晶,陈晨,王彦文,崔亮亮,韩丹丹,李湉湉. 基于“中暑”百度搜索指数评价济南市高温热浪健康风险预警模型[J]. 山东大学学报 (医学版), 2023, 61(6): 103-108. |
| [4] | 郝强,高琦,赵然,王海涛,刘志东,姜宝法. 2014~2016年气温和相对湿度对深圳市5岁以下儿童轮状病毒腹泻的影响[J]. 山东大学学报 (医学版), 2022, 60(2): 89-95. |
| [5] | 冯一平,孙大鹏,王显军,纪伊曼,刘云霞. DLNM和LSTM神经网络对临沂市手足口病发病的预测效果比较[J]. 山东大学学报 (医学版), 2022, 60(2): 96-101. |
| [6] | 萧阳,陶宇,王方怡,梁俞秀,张晋,季晓康,王志萍. 山东省部分地区PM2.5和PM10暴露与妊娠期糖尿病的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(12): 101-109. |
| [7] | 杜爽,韩德新,林少倩,白硕鑫,赵小冬,王兆军,王志萍. 孕期环境温度对早产风险的影响[J]. 山东大学学报 (医学版), 2021, 59(12): 134-142. |
| [8] | 陆开来,班婕,费鲜芸,周珍,李湉湉. 2005~2017年中国热浪事件及人口暴露水平趋势[J]. 山东大学学报 (医学版), 2021, 59(12): 158-164. |
| [9] | 石婉荧,班婕,杜宗豪,王琼,刘霞,姜超,韩联宇,王锐,崔亮亮. 济南市三城区居民热浪健康风险感知水平及影响因素[J]. 山东大学学报 (医学版), 2019, 57(1): 107-113. |
| [10] | 薛莉,胡文琦,魏然,张安然,林君芬,马伟. 2011~2013年高温热浪对苍南县高血压门诊就诊量的影响[J]. 山东大学学报 (医学版), 2018, 56(8): 63-69. |
| [11] | 张丹丹,王旭,许勤勤,郑兆磊,王珮竹,李吉庆,刘静,许青,李秀君. 菏泽市与威海市气温对流行性腮腺炎发病的影响[J]. 山东大学学报 (医学版), 2018, 56(8): 88-94. |
| [12] | 王珮竹,郑兆磊,李润滋,许勤勤,康凤玲,许青,李秀君. 济南市昼夜温差对麻疹发病的影响[J]. 山东大学学报 (医学版), 2018, 56(8): 101-106. |
| [13] | 黄存瑞,何依伶,马锐,苏亚男. 高温热浪的健康效应:从影响评估到应对策略[J]. 山东大学学报 (医学版), 2018, 56(8): 14-20. |
| [14] | 张安然,胡文琦,李佳蔚,魏然,马伟. 热浪对居民循环系统疾病死亡影响的病例交叉研究[J]. 山东大学学报 (医学版), 2018, 56(8): 56-62. |
| [15] | 崔亮亮,张萌,于坤坤,姜超,阮师漫. 济南市大气重点污染物对居民应急呼叫事件的急性影响[J]. 山东大学学报 (医学版), 2018, 56(11): 34-41. |
|
||