您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (8): 88-94.doi: 10.6040/j.issn.1671-7554.0.2018.307

• • 上一篇    

菏泽市与威海市气温对流行性腮腺炎发病的影响

张丹丹1,王旭1,许勤勤1,郑兆磊1,王珮竹1,李吉庆1,刘静1,许青2,李秀君1,3   

  1. 1.山东大学公共卫生学院生物统计学系, 山东 济南 250012;2.山东省疾病预防控制中心, 山东 济南 250014;3. 山东大学气候变化与健康研究中心, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 李秀君. E-mail:xjli@sdu.edu.cn许青. E-mail:xqepi@163.com
  • 基金资助:
    国家自然科学基金(81673238);山东省自然科学基金(ZR2016HM75)

Effect of temperature on the incidence of mumps in Heze City and Weihai City

ZHANG Dandan1, WANG Xu1, XU Qinqin1, ZHENG Zhaolei1, WANG Peizhu1, LI Jiqing1, LIU Jing1, XU Qing2, LI Xiujun1,3   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China;
    3. Shandong University Climate Change and Health Center, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 通过研究2012~2014年山东省菏泽市与威海市日平均气温对流行性腮腺炎发病的影响,为流行性腮腺炎的防控提供政策依据。 方法 收集菏泽市与威海市2012年1月1日~2014年12月31日流行性腮腺炎疾病日监测数据以及同期气象数据,通过构建分布滞后非线性模型,在控制长期趋势、季节趋势、星期几效应以及其他气象因素的情况下研究两市日平均气温对流行性腮腺炎发病风险的影响。 结果 2012~2014年菏泽市共报告流行性腮腺炎2 669例,威海市1 838例,菏泽市年发病例数均较威海市高,两市男性发病例数均高于女性,且均以学生、幼托儿童、散居儿童为主。菏泽市以日平均气温中位数16.10 ℃为参照,日平均气温在最低气温-7.10 ℃,滞后8 d时,流行性腮腺炎的发病风险达到最大,相对危险度RR=1.06(95%CI: 1.00~1.13),威海市以12.55 ℃为参照,日平均气温在最低温度-9.20 ℃,当天对流行性腮腺炎发病风险最大,RR=1.29(95%CI: 1.00~1.66)。 结论 日平均气温对流行性腮腺炎的影响呈非线性且其对菏泽市与威海市流行性腮腺炎发病达到最大危险效应的滞后时间不同,应密切监测气象因素,因地制宜,做好防控工作。

关键词: 气象因素, 日平均气温, 流行性腮腺炎, 分布滞后非线性模型

Abstract: Objective To provide a reference for the prevention and control of mumps by exploring the impact of daily mean temperature on its incidence during 2012 and 2014 in Heze City and Weihai City of Shandong Province. Methods The daily monitoring data of mumps and meteorological data of Heze City and Weihai City from Jan. 1, 2012 to Dec. 31, 2014 were collected. The distribution lag nonlinear model was constructed to investigate the effects of daily mean temperature on the incidence of mumps when the long-term trends, seasonal trends, day-of-week effects and other meteorological factors were controlled. Results During this period, a total of 2 669 and 1 838 mumps cases were reported in Heze City and Weihai City, respectively, with a higher annual incidence in Heze City. There were more male cases than female cases in both cities, especially among students, infants and scattered children. In Heze City, with the median daily temperature of 16.10 ℃ as a reference, when the lowest daily temperature was -7.10 ℃, the risk of mumps reached the highest on the 8th lag day, RR=1.06(95%CI: 1.00-1.13). In Weihai City, with 12.55 ℃ as a reference, when the lowest daily temperature 山 东 大 学 学 报 (医 学 版)56卷8期 -张丹丹,等.菏泽市与威海市气温对流行性腮腺炎发病的影响 \=-was -9.20 ℃, the risk of mumps was the highest on lag day 0, RR=1.29(95%CI: 1.00-1.66). Conclusion The daily mean temperature has a nonlinear effect on the incidence of mumps, and it has different lag time in Heze City and Weihai City. The meteorological factors should be closely monitored for effective prevention and control of mumps.

Key words: Meteorological factors, Daily mean temperature, Mumps, Distribution lag nonlinear model

中图分类号: 

  • R183.1
[1] Halassy B, Kurtovic T, Brgles M, et al. Factors influencing preclinical in vivo evaluation of mumps vaccine strain immunogenicity[J]. Hum Vaccin Immunother, 2015, 11(10): 2446-2454.
[2] Richardson M, Elliman D, Maguire H, et al. Evidence base of incubation periods, periods of infectiousness and exclusion policies for the control of communicable diseases in schools and preschools[J]. Pediatr Infect Dis J, 2001, 20(4): 380-391.
[3] Dayan GH, Quinlisk MP, Parker AA, et al. Recent resurgence of mumps in the United States[J]. N Engl J Med, 2008, 358(15): 1580-1589.
[4] Ho YC, Su BH, Su HJ, et al. The association between the incidence of mumps and meteorological parameters in Taiwan[J]. Hum Vaccin Immunother, 2015, 11(6): 1406-1412.
[5] Centers for Disease Control and Prevention(CDC). Mumps Epidemic—United Kingdom, 2004-2005[J]. MMWR Morb Mortal Wkly Rep, 2006, 55(7): 173-175.
[6] 胡咏梅. 流行性腮腺炎流行病学特征分析和疫苗效果评价[D]. 北京:中国疾病预防控制中心, 2014.
[7] 王常银, 徐留臣, 许青, 等. 山东省健康人群流行性腮腺炎抗体水平监测[J]. 中国疫苗和免疫, 2017, 23(3): 272-274. WANG Changyin, XU Liuchen, XU Qing. Monitoring mumps antibody levels among a healthy people in Shandong province[J]. Chinese Journal of Vaccines and Immunization, 2017, 23(3): 272-274.
[8] 李润滋, 章涛, 梁玉民, 等. 济宁市流行性腮腺炎与气象相关影响因素研究[J]. 环境与健康杂志, 2016, 33(5): 381-384. LI Runzi, ZHANG Tao, LIANG Yumin, et al. Association between incidence of mumps and meteorological factors in Jining[J]. Journal of Environment and Health, 2016, 33(5): 381-384.
[9] HubÃlek Z. North Atlantic weather oscillation and human infectious diseases in the Czech Republic, 1951-2003[J]. European Journal of Epidemiology, 2005, 20(3): 263-270.
[10] 苏琪茹, 刘隽, 马超, 等. 2004-2013年中国流行性腮腺炎流行病学特征分析[J]. 中华预防医学杂志, 2016, 50(7): 611-614. SU Qiru, LIU Juan, MA Chao, et al. Epidemic profile of mumps in China during 2004-2013[J]. Chinese Journal of Preventive Medicine, 2016, 50(7): 611-614.
[11] 李润滋. 山东省流行性腮腺炎时空分布与气象因素关系研究[D]. 济南: 山东大学, 2017.
[12] Li R, Cheng S, Luo C, et al. Epidemiological characteristics and spatial-temporal clusters of mumps in Shandong Province, China, 2005-2014[J]. Sci Rep, 2017, 7: 46328. doi:10.1038/srep46328
[13] 尹爱红, 曹杰, 王昆, 等. 2012年山东省流行性腮腺炎流行特征分析[J]. 预防医学论坛, 2013, 12: 943-945. YIN Aihong, CAO Jie, WANG Kun, et al. Analysis on Epidemic Characteristics of Mumps, Shandong Province, 2012[J]. Preventive Medicine Tribune, 2013, 12: 943-945.
[14] 胡咏梅, 郝利新, 王华庆. 中国2010~2012年流行性腮腺炎流行病学特征分析[J]. 中国疫苗和免疫, 2014, 2: 127-131. HU Yongmei, HAO Lixin, WANG Huaqing. Analysis on Epidemiological Characteristic of Mumps in China, 2010-2012[J]. Chinese Journal of Vaccines and Immunization, 2014, 2: 127-131.
[15] Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models[J]. Stat Med, 2010, 29(21): 2224-2234.
[16] 杨军, 欧春泉, 丁研, 等. 分布滞后非线性模型[J]. 中国卫生统计, 2012, 29(5): 772-773.
[17] Yang Q, Yang Z, Ding H, et al. The relationship between meteorological factors and mumps incidence in Guangzhou, China, 2005-2012: A distributed lag nonlinear time-series analysis[J]. Hum Vaccin Immunother, 2014, 10(8): 2421-2432.
[18] Li R, Lin H, Liang Y, et al. The short-term association between meteorological factors and mumps in Jining, China[J]. Sci Total Environ, 2016, 568(1): 1069-1075.
[19] Hu W, Li Y, Han W, et al. Meteorological factors and the incidence of mumps in Fujian Province, China, 2005-2013: Non-linear effects[J]. Sci Total Environ, 2018, 619-620: 1286-1298. doi: 10.1016/j.scitotenv.2017.11.108.
[20] Marin M, Marlow M, Moore KL, et al. Recommendation of the advisory committee on immunization practices for use of a third dose of mumps virus-containing vaccine in persons at increased risk for mumps during an outbreak[J]. MMWR Morb Mortal Wkly Rep, 2018, 67(1): 33-38. doi:10.15585/mmwr.mm6701a7.
[21] Qu Q, Fang C, Zhang L, et al. A mumps model with seasonality in China[J]. Infect Dis Model, 2017, 2(1): 1-11.
[22] Choe YJ, Lee YH, Cho SI. Increasing mumps incidence rates among children and adolescents in the Republic of Korea: age-period-cohort analysis[J]. Int J Infect Dis, 2017, 57: 92-97. doi:10.1016/j.ijid.2017.02.011
[23] Li Y, Liu X, Wang L. Modelling the transmission dynamics and control of mumps in mainland China[J]. Int J Environ Res Public Health, 2018, 15(1): 33. doi:10.3390/ijerph15010033
[24] 刘隽, 苏琪茹, 马超, 等.不同免疫策略下流行性腮腺炎发病特征的初步比较分析[J].中国疫苗与免疫,2014,20(6): 519-522. LIU Jun, SU Qiru, MA Chao, et al. Preliminary Comparative Analysis of Epidemic Characteristics of Mumps with Different Vaccination Strategies in China[J]. Chinese Journal of Vaccines and Immunization, 2014, 20(6): 519-522.
[25] Martine S, Corinne V. The resurgence of mumps and pertussis[J]. Hum Vaccin Immunother, 2016, 12(4): 955-959.
[1] 冯一平,孙大鹏,王显军,纪伊曼,刘云霞. DLNM和LSTM神经网络对临沂市手足口病发病的预测效果比较[J]. 山东大学学报 (医学版), 2022, 60(2): 96-101.
[2] 郝强,高琦,赵然,王海涛,刘志东,姜宝法. 2014~2016年气温和相对湿度对深圳市5岁以下儿童轮状病毒腹泻的影响[J]. 山东大学学报 (医学版), 2022, 60(2): 89-95.
[3] 李传玺,刘起勇,马伟. 广州市极端降水事件对不同特征人群登革热发病的影响[J]. 山东大学学报 (医学版), 2021, 59(12): 151-157.
[4] 杜爽,韩德新,林少倩,白硕鑫,赵小冬,王兆军,王志萍. 孕期环境温度对早产风险的影响[J]. 山东大学学报 (医学版), 2021, 59(12): 134-142.
[5] 萧阳,陶宇,王方怡,梁俞秀,张晋,季晓康,王志萍. 山东省部分地区PM2.5和PM10暴露与妊娠期糖尿病的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(12): 101-109.
[6] 阚海东,姜宜萱,陈仁杰. 气象因素与人群健康研究的前沿进展[J]. 山东大学学报 (医学版), 2018, 56(8): 7-13.
[7] 许勤勤,李润滋,刘娅飞,孙苑潆,郑兆磊,王珮竹,王志强,李秀君. 基于分布滞后非线性模型的青岛市温度与肾综合征出血热的剂量反应关系[J]. 山东大学学报 (医学版), 2018, 56(1): 90-96.
[8] 李润滋,章涛,梁玉民,罗成,蒋正,薛付忠,刘言训,刘静,李秀君. SARIMA模型在流行性腮腺炎发病预测中的应用[J]. 山东大学学报(医学版), 2016, 54(9): 82-86.
[9] 王宁, 丁国永, 高璐, 李杰, 李学文. 气象因素对平江县慢支敏感人群慢支死亡率的影响[J]. 山东大学学报(医学版), 2015, 53(7): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!