您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (8): 101-106.doi: 10.6040/j.issn.1671-7554.0.2018.126

• • 上一篇    

济南市昼夜温差对麻疹发病的影响

王珮竹1,郑兆磊1,李润滋1,许勤勤1,康凤玲1,许青2,李秀君1,3   

  1. 1. 山东大学公共卫生学院生物统计学系, 山东 济南250012;2. 山东省疾病预防控制中心, 山东 济南 250014;3. 山东大学气候变化与健康研究中心, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 李秀君. E-mail: xjli@sdu.edu.cn许青. E-mail: xqepi@163.com
  • 基金资助:
    山东省自然科学基金(ZR2016HM75);国家自然科学基金(81673238)

Effect of diurnal temperature range on incidence of measles in Jinan City

WANG Peizhu1, ZHENG Zhaolei1, LI Runzi1, XU Qinqin1, KANG Fengling1, XU Qing2, LI Xiujun1,3   

  1. 1. Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China;
    3. Shandong University Climate Change and Health Center, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨昼夜温差对山东省济南市麻疹发病的影响。 方法 收集济南市2005年1月1日至2011年12月31日麻疹发病监测数据及同期气象数据,在控制季节性和长期趋势的情况下,利用分布滞后非线性模型(DLNM),分析昼夜温差对人群麻疹发病的影响。 结果 2005~2011年济南市共报告麻疹病例2 198例,男女性别比为1.28 ∶1;<8月龄儿童20.70%,≥8月龄且<5岁儿童28.43%,≥5岁且<18岁人群10.92%,≥18岁成人39.95%;以昼夜温差9.1 ℃为参照,周平均昼夜温差最大(13.2 ℃)且滞后2周时RR最大,为1.92(95%CI:1.47~2.50),此时有效滞后范围最大(第0~5周);昼夜温差每增加2 ℃,对男性和女性麻疹发病均在滞后2周时效应最强,RR分别为1.19(95%CI:1.08~1.32)和1.24(95%CI:1.12~1.38);所有年龄组中昼夜温差对≥5岁且<18岁人群在滞后2周时的效应最强,RR为1.41(95%CI:1.15~1.74),对<8月龄婴儿的影响无统计学意义。 结论 较大的昼夜温差对济南市麻疹发病的影响有统计学意义并存在滞后效应,女性和≥5岁且<18岁人群更易受到昼夜温差的影响。应密切关注昼夜温差的变化,适时针对重点人群采取措施,以减轻其造成的危害。

关键词: 济南, 麻疹, 昼夜温差, 分布滞后非线性模型, 相对危险度

Abstract: Objective To investigate the effects of diurnal temperature range(DTR)on measles in Jinan City, Shandong Province. Methods With data of daily measles cases and meteorological data from 1 January, 2005 to 31 December, 2011, we used a distribution lag non-linear model(DLNM)to analyze the effects of DTR on the incidence of measles adjusted for seasonal, long-term trends and other confounding factors. Results A total of 2 198 measles cases were reported in Jinan City from 2005 to 2011, with a sex ratio of 1.28∶1. Children aged <8 months accounted for 20.70% of all cases, children aged ≥8 months and <5 years accounted for 28.43%, patients aged ≥5 and <18 years accounted for 10.92%, and those aged ≥18 accounted for 39.95%. Taking 9.1 ℃ as reference, the risk was the highest when weekly average DTR was the maximum, 13.2 ℃ on lag 2 weeks, as the relative risk(RR)was 1.92(95% CI: 1.47-2.50), when the significant lag range was the maximum. For a 2 ℃ increase in DTR, the risk was the highest in both male and female at 2 weeks lag, with RR values of 1.19(95%CI: 1.08-1.32)and 1.24(95%CI:1.12-1.38)respectively. DTR had the strongest effect on children aged ≥5 and <18 years at 2 weeks lag, with an RR of 1.41(95% CI: 1.15-1.74)and no significant effect on infants aged 8 months and younger. Conclusion The significant impact and lag effect are found between DTR and the incidence of measles in Jinan City. Female and people aged ≥5 and <18 years are more sensitive to DTR. Attention should be paid to DTR, and timely prevention measures should be taken against susceptible population to mitigate the hazard.

Key words: Jinan, Measles, Diurnal temperature range, Distributed lag non-linear model, Relative risk

中图分类号: 

  • R181.3
[1] Zhang RQ, Li HB, Li FY, et al. Epidemiological characteristics of measles from 2000 to 2014: results of a measles catch-up vaccination campaign in Xianyang, China [J]. J Infect Public Health, 2017, 10(5): 624-629.
[2] Zhao Z, Zhou R, Yu W, et al. Measles outbreak prevention and control among adults: lessons from an importation outbreak in Yunnan Province, China, 2015 [J]. Hum Vaccin Immunother, 2018, 14(4): 881-886.
[3] Currie J, Davies L, Mccarthy J, et al. Measles outbreak linked to European B3 outbreaks, Wales, United Kingdom, 2017 [J]. Euro Surveill, 2017, 22(42). doi: 10.2807/1560-7917.ES.2017. 22.42.17-00673.
[4] Choe YJ, Park YJ, Kim JW, et al. An outbreak of measles in a university in Korea, 2014 [J]. J Korean Med Sci, 2017, 32(11): 1876-1878.
[5] 张世英, 李洁, 李长军, 等. 1961~2013年聊城市麻疹流行状况与气象因素的关系[J]. 预防医学论坛, 2014, 20(9): 645-647. ZHANG Shiying, LI Jie, LI Changjun, et al. The prevalence of measles and the relationship with meteorological factors, Liaocheng City, 1961-2013[J]. Prev Med Trib, 2014, 20(9): 645-647.
[6] 陶燕, 宋捷, 强力, 等. 兰州市城关区气象因素与麻疹发病人数的时间序列研究[J]. 中国环境科学, 2014, 34(11): 2964-2969. TAO Yan, SONG Jie, QIANG Li, et al. Time series analysis between meteorological factors and measles in Chengguan District, Lanzhou [J]. China Environmental Science, 2014, 34(11): 2964-2969.
[7] Yang Q, Fu C, Dong Z, et al. The effects of weather conditions on measles incidence in Guangzhou, Southern China [J]. Hum Vaccin Immunother, 2014, 10(4): 1104-1110.
[8] Omonijo AG, Matzarakis A, Oguntoke O, et al. Effect of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria [J]. Int J Biometeorol, 2012, 56(5): 873-885.
[9] Easterling DR, Horton B, Jones PD, et al. Maximum and minimum temperature trends for the globe [J]. Science, 1997, 277(5324): 364-367.
[10] Zhang Y, Peng M, Wang L, et al. Association of diurnal temperature range with daily mortality in England and Wales: a nationwide time-series study [J]. Sci Total Environ, 2017, 619-620: 291-300. doi: 10.1016/j.scitotenv.2017.11.056.
[11] Lim YH, Hong YC, Kim H. Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea[J]. Sci Total Environ, 2012, 417-418: 55-60. doi: 10.1016/j.scitotenv.2011.12.048.
[12] Liang WM, Liu WP, Kuo HW. Diurnal temperature range and emergency room admissions for chronic obstructive pulmonary disease in Taiwan[J]. Int J Biometeorol, 2009, 53(1): 17-23.
[13] Wen L, Zhao K, Cheng J, et al. The association between diurnal temperature range and childhood bacillary dysentery[J]. Int J Biometeorol, 2016, 60(2): 269-276.
[14] Yin F, Ma Y, Zhao X, et al. The association between diurnal temperature range and childhood hand, foot, and mouth disease: a distributed lag non-linear analysis [J]. Epidemiol Infect, 2017, 145(15): 3264-3273.
[15] Ge WZ, Xu F, Zhao ZH, et al. Association between diurnal temperature range and respiratory tract infections [J]. Biomed Environ Sci, 2013, 26(3): 222-225.
[16] Zhao X, Chen F, Feng Z, et al. Characterizing the effect of temperature fluctuation on the incidence of malaria: an epidemiological study in south-west China using the varying coefficient distributed lag non-linear model [J]. Malar J, 2014, 13: 192. doi: 10.1186/1475-2875-13-192.
[17] Zhang Y, Li C, Feng R, et al. The short-term effect of ambient temperature on mortality in Wuhan, China: a time-series study using a distributed lag non-linear model[J]. Int J Environ Res Public Health, 2016, 13(7): 722-734.
[18] Wang X, Boulton ML, Montgomery JP, et al. The epidemiology of measles in Tianjin, China, 2005-2014 [J]. Vaccine, 2015, 33(46): 6186-6191.
[19] 韩京, 李传彬, 赵小东, 等. 2008~2012年济南市麻疹流行特征分析[J]. 现代预防医学, 2015, 42(7): 1170-1172. HAN Jing, LI Chuanbin, ZHAO Xiaodong, et al. Analysis on measles epidemic characteristic in Jinan, 2008-2012. [J]. Modern Preventive Medicine, 2015, 42(7): 1170-1172.
[20] Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models [J]. Stat Med, 2010, 29(21): 2224-2234.
[21] 程健, 许祥青, 朱瑞, 等. 2008~2012年马鞍山市某地区的昼夜温差与每日死亡的时间序列研究[J]. 中华疾病控制杂志, 2014, 18(4): 312-316. CHENG Jian, XU Xiangqin, ZHU Rui, et al. A time-series study on diurnal temperature range and daily mortality in Maanshan City, 2008-2012 [J]. Chin J Dis Contl Prev, 2014, 18(4): 312-316.
[22] Liu ZD, Li J, Zhang Y, et al. Distributed lag effects and vulnerable groups of floods on bacillary dysentery in Huaihua, China[J]. Sci Rep, 2016, 6: 29456. doi: 10.1038/srep29456.
[23] Gasparrini A. Distributed lag linear and non-Linear models in R: the package dlnm [J]. J Stat Softw, 2011, 43(8): 1-20.
[24] Imai Y, Nobuoka S, Nagashima J, et al. Acute myocardial infarction induced by alternating exposure to heat in a sauna and rapid cooling in cold water [J]. Cariol, 1998, 90(4): 299-301.
[25] Diesel DA, Lebel JL, Tucker A. Pulmonary particle deposition and airway mucociliary clearance in cold-exposed calves [J]. Amer J Vet Res, 1991, 52(10): 1665-1671.
[26] Gao J, Chen E, Wang Z, et al. Epidemic of measles following the nationwide mass immunization campaign [J]. BMC Infect Dis, 2013, 13: 139. doi: 10.1186/1471-2334-13-139.
[27] Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008 [J]. Environ Health, 2009, 8(1): 1-13.
[28] 刘刚, 单芙香, 张顺祥. 成人麻疹的流行现状及控制策略[J]. 国际流行病学传染病学杂志, 2006, 33(6): 420-422. LIU Gang, SHAN Fuxiang, ZHANG Shunxiang. The strategy on measles control and its epidemic status among adult [J]. Inter J Epidemiol Infect Dis, 2006, 33(6): 420-422.
[29] 李淑华. 计划免疫后麻疹流行特征与预防策略研究[D]. 上海: 复旦大学, 2007.
[1] 李宁 张征 张宏群 高希宝. 济南居民膳食硒摄入量与血清硒参考值调查[J]. 山东大学学报(医学版), 2209, 47(6): 121-122.
[2] 冯一平,孙大鹏,王显军,纪伊曼,刘云霞. DLNM和LSTM神经网络对临沂市手足口病发病的预测效果比较[J]. 山东大学学报 (医学版), 2022, 60(2): 96-101.
[3] 郝强,高琦,赵然,王海涛,刘志东,姜宝法. 2014~2016年气温和相对湿度对深圳市5岁以下儿童轮状病毒腹泻的影响[J]. 山东大学学报 (医学版), 2022, 60(2): 89-95.
[4] 杜爽,韩德新,林少倩,白硕鑫,赵小冬,王兆军,王志萍. 孕期环境温度对早产风险的影响[J]. 山东大学学报 (医学版), 2021, 59(12): 134-142.
[5] 萧阳,陶宇,王方怡,梁俞秀,张晋,季晓康,王志萍. 山东省部分地区PM2.5和PM10暴露与妊娠期糖尿病的关联性分析[J]. 山东大学学报 (医学版), 2021, 59(12): 101-109.
[6] 张丹丹,王旭,许勤勤,郑兆磊,王珮竹,李吉庆,刘静,许青,李秀君. 菏泽市与威海市气温对流行性腮腺炎发病的影响[J]. 山东大学学报 (医学版), 2018, 56(8): 88-94.
[7] 许勤勤,李润滋,刘娅飞,孙苑潆,郑兆磊,王珮竹,王志强,李秀君. 基于分布滞后非线性模型的青岛市温度与肾综合征出血热的剂量反应关系[J]. 山东大学学报 (医学版), 2018, 56(1): 90-96.
[8] 唐小敏,张丽,叶绪芳,任刚,左丽. 贵州省2013年麻疹病毒核蛋白基因特征分析[J]. 山东大学学报(医学版), 2017, 55(3): 70-74.
[9] 罗成,许青,孙霖,章涛,李润滋,刘言训,薛付忠,李秀君. SIR模型在成人麻疹爆发及其疫情控制评价中的应用[J]. 山东大学学报(医学版), 2016, 54(9): 87-91.
[10] 关恒云, 王春荣, 吕燕,张雯,杨国樑,刘岚铮. 2012年济南市手足口病病原学及流行特征[J]. 山东大学学报(医学版), 2013, 51(10): 101-104.
[11] 赵向阳,侯霄煜,陶明锐,李庆山,石涓,陈红艳. 济南铁路辖区2006~2010年食(饮)具消毒效果分析[J]. 山东大学学报(医学版), 2012, 50(1): 136-.
[12] 李宁 张征 张宏群 高希宝. 济南居民膳食硒摄入量与血清硒参考值调查[J]. 山东大学学报(医学版), 2009, 47(6): 121-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!