您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 1-6.doi: 10.6040/j.issn.1671-7554.0.2023.0773

• 医学影像人工智能的创新与挑战—专家综述 •    下一篇

人工智能在心肌影像应用中的研究进展

聂佩1,王锡明2,*()   

  1. 1. 青岛大学附属医院放射科, 山东 青岛 266003
    2. 山东第一医科大学附属山东省立医院医学影像科, 山东 济南 250021
  • 收稿日期:2023-08-30 出版日期:2023-12-10 发布日期:2024-01-11
  • 通讯作者: 王锡明 E-mail:wxming369@163.com
  • 作者简介:王锡明,山东第一医科大学附属省立医院医学影像中心主任/影像科主任,山东第一医科大学放射学院放射影像专业学术带头人、放射影像学系主任,山东大学/山东第一医科大学二级教授、博士研究生导师。研究方向为心脑血管疾病及胸部疾病影像诊断、医学影像人工智能。荣誉称号:国家卫生健康突出贡献中青年专家,山东省“泰山学者”特聘专家,山东省有突出贡献的中青年专家。学术任职:中华医学会放射学分会委员及分子影像学组副组长、中华医学会心血管病学分会心血管病影像学组委员、山东省医学会放射学分会候任主任委员、国家心血管病专家委员会委员、中国医师协会放射医师分会委员、山东省研究型医院协会医学影像诊断学分会主任委员
  • 基金资助:
    国家自然科学基金(82271993);中国博士后科学基金(2021M701811)

Research progress in the application of artificial intelligence in myocardial imaging

Pei NIE1,Ximing WANG2,*()   

  1. 1. Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
    2. Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
  • Received:2023-08-30 Online:2023-12-10 Published:2024-01-11
  • Contact: Ximing WANG E-mail:wxming369@163.com

摘要:

近年来,人工智能(AI)在心肌影像领域展现出巨大潜力。AI算法实现了心肌影像的自动分割和测量,优化了工作流程。此外,AI通过影像组学和深度学习技术,提取能表征心肌病理改变的定量特征,辅助缺血性心肌病和非缺血性心肌病的精准诊断和预后评估。论文主要从心肌AI图像分析、影像AI辅助心肌疾病诊断和预后评估方面综述AI在心肌影像中的研究进展,并分析心肌影像AI的局限性,以期为更深入的心肌影像AI临床应用研究提供参考。

关键词: 人工智能, 心肌, 影像

Abstract:

Recently, artificial intelligence (AI) has shown great potential in myocardial imaging. AI algorithms achieve automatic segmentation and measurement of myocardial images thus optimizing the workflow. The quantitative features which characterized the pathological changes of myocardium were extracted through radiomics and deep learning techniques. These features may facilitate precise diagnosis and outcome prediction of ischemic and non-ischemic cardiomyopathies. In this review, we will introduce the research progress of AI in myocardial imaging from several aspects: AI-assisted image analysis, diagnosis and outcome evaluation of cardiomyopathies. The limitations of AI in myocardial imaging will also be discussed. We hope this review may provide references for further clinical application research of AI in myocardial imaging.

Key words: Artificial intelligence, Myocardium, Imaging

中图分类号: 

  • R816.2
1 徐子良, 郑敏文. 人工智能在心血管影像的应用现状及展望[J]. 中华放射学杂志, 2021, 55 (6): 687- 691.
doi: 10.3760/cma.j.cn112149-20200611-00802
XU Ziliang , ZHENG Minwen . Current application and prospects of artificial intelligence in cardiovascular imaging[J]. Chin J Radiol, 2021, 55 (6): 687- 691.
doi: 10.3760/cma.j.cn112149-20200611-00802
2 Jiang B , Guo N , Ge Y , et al. Development and application of artificial intelligence in cardiac imaging[J]. Br J Radiol, 2020, 93 (1113): 20190812.
doi: 10.1259/bjr.20190812
3 Kim KH , Kwon JM , Pereira T , et al. Artificial intelligence applied to cardiomyopathies: is it time for clinical application?[J]. Curr Cardiol Rep, 2022, 24 (11): 1547- 1555.
doi: 10.1007/s11886-022-01776-4
4 Lal S. TC-SegNet: robust deep learning network for fully automatic two-chamber segmentation of two-dimensional echocardiography[J]. Multimed Tools Appl, Jun 3: 1-19. doi: 10.1007/s11042-023-15524-5.
5 Li M , Wang C , Zhang H , et al. MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis[J]. Comput Biol Med, 2020, 120, 103728.
doi: 10.1016/j.compbiomed.2020.103728
6 Zamzmi G , Rajaraman S , Hsu LY , et al. Real-time echocardiography image analysis and quantification of cardiac indices[J]. Med Image Anal, 2022, 80, 102438.
doi: 10.1016/j.media.2022.102438
7 Abdeltawab H , Khalifa F , Taher F , et al. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images[J]. Comput Med Imaging Graph, 2020, 81, 101717.
doi: 10.1016/j.compmedimag.2020.101717
8 Kim YC , Kim KR , Choi K , et al. EVCMR: A tool for the quantitative evaluation and visualization of cardiac MRI data[J]. Comput Biol Med, 2019, 111, 103334.
doi: 10.1016/j.compbiomed.2019.103334
9 Lustermans DRPRM , Amirrajab S , Veta M , et al. Optimized automated cardiac MR scar quantification with GAN-based data augmentation[J]. Comput Methods Programs Biomed, 2022, 226, 107116.
doi: 10.1016/j.cmpb.2022.107116
10 Zhang Q , Burrage MK , Lukaschuk E , et al. Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy[J]. Circulation, 2021, 144 (8): 589- 599.
doi: 10.1161/CIRCULATIONAHA.121.054432
11 Zhang Q , Burrage MK , Shanmuganathan M , et al. Artificial intelligence for contrast-free MRI: scar assessment in myocardial infarction using deep learning-based virtual native enhancement[J]. Circulation, 2022, 146 (20): 1492- 1503.
doi: 10.1161/CIRCULATIONAHA.122.060137
12 Koo HJ , Lee JG , Ko JY , et al. Automated segmentation of left ventricular myocardium on cardiac computed tomography using deep learning[J]. Korean J Radiol, 2020, 21 (6): 660- 669.
doi: 10.3348/kjr.2019.0378
13 He X , Guo BJ , Lei Y , et al. Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study[J]. Eur Radiol, 2021, 31 (6): 3826- 3836.
doi: 10.1007/s00330-020-07482-5
14 Zhu F , Li L , Zhao J , et al. A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images[J]. Comput Biol Med, 2023, 160, 106954.
doi: 10.1016/j.compbiomed.2023.106954
15 Zhang Y , Wang F , Wu H , et al. An automatic segmentation method with self-attention mechanism on left ventricle in gated PET/CT myocardial perfusion imaging[J]. Comput Methods Programs Biomed, 2023, 229, 107267.
doi: 10.1016/j.cmpb.2022.107267
16 Beliveau P , Cheriet F , Anderson SA , et al. Textural analysis of late gadolinium enhanced magnetic resonance images can discriminate acute from chronic myocardial infarction[J]. J Cardiovasc Magn Reson, 2014, 16 (Suppl 1): 182.
17 Beliveau P , Cheriet F , Anderson SA , et al. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation[J]. Comput Biol Med, 2015, 65, 103- 113.
doi: 10.1016/j.compbiomed.2015.07.027
18 Yang YC , Dou Y , Wang ZW , et al. Prediction of myocardial ischemia in coronary heart disease patients using a CCTA-Based radiomic nomogram[J]. Front Cardiovasc Med, 2023, Jan 19, 1024773.
doi: 10.3389/fcvm.2023.1024773
19 Zhu MM , Zhu XM , Lin SS , et al. The incremental value of CCTA-derived myocardial radiomics signature for ischemia diagnosis with reference to CT myocardial perfusion imaging[J]. Br J Radiol, 2023, 96 (1148): 20220971.
doi: 10.1259/bjr.20220971
20 van Hamersvelt RW , Zreik M , Voskuil M , et al. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis[J]. Eur Radiol, 2019, 29 (5): 2350- 2359.
doi: 10.1007/s00330-018-5822-3
21 Baessler B , Mannil M , Oebel S , et al. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images[J]. Radiology, 2018, 286 (1): 103- 112.
doi: 10.1148/radiol.2017170213
22 Jiang S , Zhang L , Wang J , et al. Differentiating between cardiac amyloidosis and hypertrophic cardiomyopathy on non-contrast cine-magnetic resonance images using machine learning-based radiomics[J]. Front Cardiovasc Med, 2022, 9, 1001269.
doi: 10.3389/fcvm.2022.1001269
23 Shi RY , Wu R , An DL , et al. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls[J]. Clin Radiol, 2021, 76 (3): 236.e9- 236.e19.
doi: 10.1016/j.crad.2020.11.001
24 Wang ZC , Fan ZZ , Liu XY , et al. Deep learning for discrimination of hypertrophic cardiomyopathy and hypertensive heart disease on MRI native T1 maps[J]. J Magn Reson Imaging, 2023, Jul 11
doi: 10.1002/jmri.28904
25 Chen BH , An DA , He J , et al. Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction[J]. Eur Radiol, 2021, 31 (1): 504- 514.
doi: 10.1007/s00330-020-07117-9
26 Ma Q , Ma Y , Yu T , et al. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction[J]. Korean J Radiol, 2021, 22 (4): 535- 546.
doi: 10.3348/kjr.2019.0969
27 Durmaz ES , Karabacak M , Ozkara BB , et al. Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events[J]. Eur Radiol, 2023, 33 (7): 4611- 4620.
doi: 10.1007/s00330-023-09394-6
28 Mohebi M , Amini M , Alemzadeh-Ansari MJ , et al. Post-revascularization ejection fraction prediction for patients undergoing percutaneous coronary intervention based on myocardial perfusion SPECT imaging radiomics: a preliminary machine learning study[J]. J Digit Imaging, 2023, 36 (4): 1348- 1363.
doi: 10.1007/s10278-023-00820-1
29 Zhang J , Xu Y , Li W , et al. The predictive value of myocardial native T1 mapping radiomics in dilated cardiomyopathy: a study in a Chinese population[J]. J Magn Reson Imaging, 2023, 58 (3): 772- 779.
doi: 10.1002/jmri.28527
30 Fahmy AS , Rowin EJ , Jaafar N , et al. Radiomics of late gadolinium enhancement reveals prognostic value of myocardial scar heterogeneity in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2023, Jun 8, S1936-878X(23)00222-X.
doi: 10.1016/j.jcmg.2023.05.003
31 Lin A, Kolossváry M, Motwani M, et al. Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease[J]. Radiol Cardiothorac Imaging. 2021, 25: 3(1): e200512. doi: 10.1148/ryct.2021200512.
32 Alis D , Yergin M , Asmakutlu O , et al. The influence of cardiac motion on radiomics features: radiomics features of non-enhanced CMR cine images greatly vary through the cardiac cycle[J]. Eur Radiol, 2021, 31 (5): 2706- 2715.
doi: 10.1007/s00330-020-07370-y
33 王琳琳, 孙玉萍. 从临床医生角度, 看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报(医学版), 2021, 59 (9): 89- 96.
WANG Linlin , SUN Yuping . From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment[J]. Journal of Shandong University (Health Sciences), 2021, 59 (9): 89- 96.
34 Ponsiglione A , Stanzione A , Cuocolo R , et al. Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment[J]. Eur Radiol, 2022, 32 (4): 2629- 2638.
doi: 10.1007/s00330-021-08375-x
35 Lee S , Han K , Suh YJ . Quality assessment of radiomics research in cardiac CT: a systematic review[J]. Eur Radiol, 2022, 32 (5): 3458- 3468.
doi: 10.1007/s00330-021-08429-0
36 Muscogiuri G , Van Assen M , Tesche C , et al. Artificial intelligence in coronary computed tomography angiography: from anatomy to prognosis[J]. Biomed Res Int, 2020, 2020, 6649410.
doi: 10.1155/2020/6649410
[1] 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72.
[2] 靳新娟,左立平,邓展昊,李安宁,于德新. MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值[J]. 山东大学学报 (医学版), 2023, 61(6): 79-86.
[3] 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67.
[4] 赵赓,买若鹏,赵景才,刘新宇. 中国人适应性腰椎微创通道:基于CT影像学测量下的解剖数据分析[J]. 山东大学学报 (医学版), 2023, 61(3): 90-96.
[5] 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6.
[6] 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45.
[7] 郭永园,孙厚义,张元凯,颜廷宾,刘培来,贾玉华. 鸿鹄机器人辅助全膝关节置换的早期学习曲线[J]. 山东大学学报 (医学版), 2023, 61(3): 115-120.
[8] 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133.
[9] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[10] 杨晓斐,韩波,姜殿东,吕建利,伊迎春,张建军,赵立健,王静,王艳,袁辉. 经导管射频消融术治疗儿童快速性心律失常972例临床分析[J]. 山东大学学报 (医学版), 2023, 61(2): 49-56.
[11] 徐子良,郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报 (医学版), 2023, 61(12): 7-12, 20.
[12] 李骁,孙志远,张龙江. 影像人工智能在肺炎筛查、诊断及预测领域的应用研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 13-20.
[13] 赵古月,尚靳,侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报 (医学版), 2023, 61(12): 30-35.
[14] 艾江山,高会江,艾仕文,李恒艳,石国栋,魏煜程. CT影像组学对囊腔型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(12): 70-77.
[15] 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[8] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[9] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .