山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 1-6.doi: 10.6040/j.issn.1671-7554.0.2023.0773
• 医学影像人工智能的创新与挑战—专家综述 • 下一篇
摘要:
近年来,人工智能(AI)在心肌影像领域展现出巨大潜力。AI算法实现了心肌影像的自动分割和测量,优化了工作流程。此外,AI通过影像组学和深度学习技术,提取能表征心肌病理改变的定量特征,辅助缺血性心肌病和非缺血性心肌病的精准诊断和预后评估。论文主要从心肌AI图像分析、影像AI辅助心肌疾病诊断和预后评估方面综述AI在心肌影像中的研究进展,并分析心肌影像AI的局限性,以期为更深入的心肌影像AI临床应用研究提供参考。
中图分类号:
1 |
徐子良, 郑敏文. 人工智能在心血管影像的应用现状及展望[J]. 中华放射学杂志, 2021, 55 (6): 687- 691.
doi: 10.3760/cma.j.cn112149-20200611-00802 |
XU Ziliang , ZHENG Minwen . Current application and prospects of artificial intelligence in cardiovascular imaging[J]. Chin J Radiol, 2021, 55 (6): 687- 691.
doi: 10.3760/cma.j.cn112149-20200611-00802 |
|
2 |
Jiang B , Guo N , Ge Y , et al. Development and application of artificial intelligence in cardiac imaging[J]. Br J Radiol, 2020, 93 (1113): 20190812.
doi: 10.1259/bjr.20190812 |
3 |
Kim KH , Kwon JM , Pereira T , et al. Artificial intelligence applied to cardiomyopathies: is it time for clinical application?[J]. Curr Cardiol Rep, 2022, 24 (11): 1547- 1555.
doi: 10.1007/s11886-022-01776-4 |
4 | Lal S. TC-SegNet: robust deep learning network for fully automatic two-chamber segmentation of two-dimensional echocardiography[J]. Multimed Tools Appl, Jun 3: 1-19. doi: 10.1007/s11042-023-15524-5. |
5 |
Li M , Wang C , Zhang H , et al. MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis[J]. Comput Biol Med, 2020, 120, 103728.
doi: 10.1016/j.compbiomed.2020.103728 |
6 |
Zamzmi G , Rajaraman S , Hsu LY , et al. Real-time echocardiography image analysis and quantification of cardiac indices[J]. Med Image Anal, 2022, 80, 102438.
doi: 10.1016/j.media.2022.102438 |
7 |
Abdeltawab H , Khalifa F , Taher F , et al. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images[J]. Comput Med Imaging Graph, 2020, 81, 101717.
doi: 10.1016/j.compmedimag.2020.101717 |
8 |
Kim YC , Kim KR , Choi K , et al. EVCMR: A tool for the quantitative evaluation and visualization of cardiac MRI data[J]. Comput Biol Med, 2019, 111, 103334.
doi: 10.1016/j.compbiomed.2019.103334 |
9 |
Lustermans DRPRM , Amirrajab S , Veta M , et al. Optimized automated cardiac MR scar quantification with GAN-based data augmentation[J]. Comput Methods Programs Biomed, 2022, 226, 107116.
doi: 10.1016/j.cmpb.2022.107116 |
10 |
Zhang Q , Burrage MK , Lukaschuk E , et al. Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy[J]. Circulation, 2021, 144 (8): 589- 599.
doi: 10.1161/CIRCULATIONAHA.121.054432 |
11 |
Zhang Q , Burrage MK , Shanmuganathan M , et al. Artificial intelligence for contrast-free MRI: scar assessment in myocardial infarction using deep learning-based virtual native enhancement[J]. Circulation, 2022, 146 (20): 1492- 1503.
doi: 10.1161/CIRCULATIONAHA.122.060137 |
12 |
Koo HJ , Lee JG , Ko JY , et al. Automated segmentation of left ventricular myocardium on cardiac computed tomography using deep learning[J]. Korean J Radiol, 2020, 21 (6): 660- 669.
doi: 10.3348/kjr.2019.0378 |
13 |
He X , Guo BJ , Lei Y , et al. Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study[J]. Eur Radiol, 2021, 31 (6): 3826- 3836.
doi: 10.1007/s00330-020-07482-5 |
14 |
Zhu F , Li L , Zhao J , et al. A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images[J]. Comput Biol Med, 2023, 160, 106954.
doi: 10.1016/j.compbiomed.2023.106954 |
15 |
Zhang Y , Wang F , Wu H , et al. An automatic segmentation method with self-attention mechanism on left ventricle in gated PET/CT myocardial perfusion imaging[J]. Comput Methods Programs Biomed, 2023, 229, 107267.
doi: 10.1016/j.cmpb.2022.107267 |
16 | Beliveau P , Cheriet F , Anderson SA , et al. Textural analysis of late gadolinium enhanced magnetic resonance images can discriminate acute from chronic myocardial infarction[J]. J Cardiovasc Magn Reson, 2014, 16 (Suppl 1): 182. |
17 |
Beliveau P , Cheriet F , Anderson SA , et al. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation[J]. Comput Biol Med, 2015, 65, 103- 113.
doi: 10.1016/j.compbiomed.2015.07.027 |
18 |
Yang YC , Dou Y , Wang ZW , et al. Prediction of myocardial ischemia in coronary heart disease patients using a CCTA-Based radiomic nomogram[J]. Front Cardiovasc Med, 2023, Jan 19, 1024773.
doi: 10.3389/fcvm.2023.1024773 |
19 |
Zhu MM , Zhu XM , Lin SS , et al. The incremental value of CCTA-derived myocardial radiomics signature for ischemia diagnosis with reference to CT myocardial perfusion imaging[J]. Br J Radiol, 2023, 96 (1148): 20220971.
doi: 10.1259/bjr.20220971 |
20 |
van Hamersvelt RW , Zreik M , Voskuil M , et al. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis[J]. Eur Radiol, 2019, 29 (5): 2350- 2359.
doi: 10.1007/s00330-018-5822-3 |
21 |
Baessler B , Mannil M , Oebel S , et al. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images[J]. Radiology, 2018, 286 (1): 103- 112.
doi: 10.1148/radiol.2017170213 |
22 |
Jiang S , Zhang L , Wang J , et al. Differentiating between cardiac amyloidosis and hypertrophic cardiomyopathy on non-contrast cine-magnetic resonance images using machine learning-based radiomics[J]. Front Cardiovasc Med, 2022, 9, 1001269.
doi: 10.3389/fcvm.2022.1001269 |
23 |
Shi RY , Wu R , An DL , et al. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls[J]. Clin Radiol, 2021, 76 (3): 236.e9- 236.e19.
doi: 10.1016/j.crad.2020.11.001 |
24 |
Wang ZC , Fan ZZ , Liu XY , et al. Deep learning for discrimination of hypertrophic cardiomyopathy and hypertensive heart disease on MRI native T1 maps[J]. J Magn Reson Imaging, 2023, Jul 11
doi: 10.1002/jmri.28904 |
25 |
Chen BH , An DA , He J , et al. Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction[J]. Eur Radiol, 2021, 31 (1): 504- 514.
doi: 10.1007/s00330-020-07117-9 |
26 |
Ma Q , Ma Y , Yu T , et al. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction[J]. Korean J Radiol, 2021, 22 (4): 535- 546.
doi: 10.3348/kjr.2019.0969 |
27 |
Durmaz ES , Karabacak M , Ozkara BB , et al. Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events[J]. Eur Radiol, 2023, 33 (7): 4611- 4620.
doi: 10.1007/s00330-023-09394-6 |
28 |
Mohebi M , Amini M , Alemzadeh-Ansari MJ , et al. Post-revascularization ejection fraction prediction for patients undergoing percutaneous coronary intervention based on myocardial perfusion SPECT imaging radiomics: a preliminary machine learning study[J]. J Digit Imaging, 2023, 36 (4): 1348- 1363.
doi: 10.1007/s10278-023-00820-1 |
29 |
Zhang J , Xu Y , Li W , et al. The predictive value of myocardial native T1 mapping radiomics in dilated cardiomyopathy: a study in a Chinese population[J]. J Magn Reson Imaging, 2023, 58 (3): 772- 779.
doi: 10.1002/jmri.28527 |
30 |
Fahmy AS , Rowin EJ , Jaafar N , et al. Radiomics of late gadolinium enhancement reveals prognostic value of myocardial scar heterogeneity in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2023, Jun 8, S1936-878X(23)00222-X.
doi: 10.1016/j.jcmg.2023.05.003 |
31 | Lin A, Kolossváry M, Motwani M, et al. Artificial intelligence in cardiovascular imaging for risk stratification in coronary artery disease[J]. Radiol Cardiothorac Imaging. 2021, 25: 3(1): e200512. doi: 10.1148/ryct.2021200512. |
32 |
Alis D , Yergin M , Asmakutlu O , et al. The influence of cardiac motion on radiomics features: radiomics features of non-enhanced CMR cine images greatly vary through the cardiac cycle[J]. Eur Radiol, 2021, 31 (5): 2706- 2715.
doi: 10.1007/s00330-020-07370-y |
33 | 王琳琳, 孙玉萍. 从临床医生角度, 看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报(医学版), 2021, 59 (9): 89- 96. |
WANG Linlin , SUN Yuping . From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment[J]. Journal of Shandong University (Health Sciences), 2021, 59 (9): 89- 96. | |
34 |
Ponsiglione A , Stanzione A , Cuocolo R , et al. Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment[J]. Eur Radiol, 2022, 32 (4): 2629- 2638.
doi: 10.1007/s00330-021-08375-x |
35 |
Lee S , Han K , Suh YJ . Quality assessment of radiomics research in cardiac CT: a systematic review[J]. Eur Radiol, 2022, 32 (5): 3458- 3468.
doi: 10.1007/s00330-021-08429-0 |
36 |
Muscogiuri G , Van Assen M , Tesche C , et al. Artificial intelligence in coronary computed tomography angiography: from anatomy to prognosis[J]. Biomed Res Int, 2020, 2020, 6649410.
doi: 10.1155/2020/6649410 |
[1] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[2] | 靳新娟,左立平,邓展昊,李安宁,于德新. MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值[J]. 山东大学学报 (医学版), 2023, 61(6): 79-86. |
[3] | 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67. |
[4] | 赵赓,买若鹏,赵景才,刘新宇. 中国人适应性腰椎微创通道:基于CT影像学测量下的解剖数据分析[J]. 山东大学学报 (医学版), 2023, 61(3): 90-96. |
[5] | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6. |
[6] | 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45. |
[7] | 郭永园,孙厚义,张元凯,颜廷宾,刘培来,贾玉华. 鸿鹄机器人辅助全膝关节置换的早期学习曲线[J]. 山东大学学报 (医学版), 2023, 61(3): 115-120. |
[8] | 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133. |
[9] | 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20. |
[10] | 杨晓斐,韩波,姜殿东,吕建利,伊迎春,张建军,赵立健,王静,王艳,袁辉. 经导管射频消融术治疗儿童快速性心律失常972例临床分析[J]. 山东大学学报 (医学版), 2023, 61(2): 49-56. |
[11] | 徐子良,郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报 (医学版), 2023, 61(12): 7-12, 20. |
[12] | 李骁,孙志远,张龙江. 影像人工智能在肺炎筛查、诊断及预测领域的应用研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 13-20. |
[13] | 赵古月,尚靳,侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报 (医学版), 2023, 61(12): 30-35. |
[14] | 艾江山,高会江,艾仕文,李恒艳,石国栋,魏煜程. CT影像组学对囊腔型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(12): 70-77. |
[15] | 朱正阳,沈靖菲,陈思璇,叶梅萍,杨惠泉,周佳南,梁雪,张鑫,张冰. 磁敏感加权成像不同影像组学模型预测胶质瘤IDH基因突变[J]. 山东大学学报 (医学版), 2023, 61(12): 44-50. |
|