山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 7-12, 20.doi: 10.6040/j.issn.1671-7554.0.2023.0705
• 医学影像人工智能的创新与挑战—专家综述 • 上一篇 下一篇
摘要:
随着科技的发展,人工智能(AI)技术正逐渐应用于医学影像领域,但是AI技术仍面临诸多挑战。论文将分别从组织分割、疾病辅助诊断及临床研究三个方面综述影像AI技术在医学领域的应用进展,同时指出目前AI技术应用存在的问题。最后针对影像AI技术在医学领域中面临的挑战进行述评。
中图分类号:
1 | Russell SJ , Norvig P . Artificial Intelligence, A Modern Approach - 2nd Edition[M]. Upper Saddle River, New Jersey: Prentice Hall, 2003. |
2 |
Chen X , Wang X , Zhang K , et al. Recent advances and clinical applications of deep learning in medical image analysis[J]. Med Image Anal, 2022, 79, 102444.
doi: 10.1016/j.media.2022.102444 |
3 |
Shokraei Fard A , Reutens DC , Vegh V . From CNNs to GANs for cross-modality medical image estimation[J]. Comput Biol Med, 2022, 146, 105556.
doi: 10.1016/j.compbiomed.2022.105556 |
4 |
Bhuva AN , Bai W , Lau C , et al. A Multicenter, scan-rescan, human and machine learning cmr study to test generalizability and precision in imaging biomarker analysis[J]. Circ Cardiovasc Imaging, 2019, 12 (10): e009214.
doi: 10.1161/circimaging.119.009214 |
5 |
Aggarwal R , Sounderajah V , Martin G , et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis[J]. NPJ Digit Med, 2021, 4 (1): 65.
doi: 10.1038/s41746-021-00438-z |
6 |
Johnson KW , Torres Soto J , Glicksberg BS , et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71 (23): 2668- 2679.
doi: 10.1016/j.jacc.2018.03.521 |
7 |
Jain S , Indora S , Atal DK . Lung nodule segmentation using Salp Shuffled Shepherd Optimization Algorithm-based Generative Adversarial Network[J]. Comput Biol Med, 2021, 137, 104811.
doi: 10.1016/j.compbiomed.2021.104811 |
8 |
Zhao X , Wu Y , Song G , et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Med Image Anal, 2018, 43, 98- 111.
doi: 10.1016/j.media.2017.10.002 |
9 |
Alizadehsani R , Hosseini MJ , Khosravi A , et al. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries[J]. Comput Methods Programs Biomed, 2018, 162, 119- 127.
doi: 10.1016/j.cmpb.2018.05.009 |
10 |
Rajendra Acharya U , Meiburger KM , Wei Koh JE , et al. Automated plaque classification using computed tomography angiography and Gabor transformations[J]. Artif Intell Med, 2019, 100, 101724.
doi: 10.1016/j.artmed.2019.101724 |
11 |
Han D , Kolli KK , Gransar H , et al. Machine learning based risk prediction model for asymptomatic individuals who underwent coronary artery calcium score: Comparison with traditional risk prediction approaches[J]. J Cardiovasc Comput Tomogr, 2020, 14 (2): 168- 176.
doi: 10.1016/j.jcct.2019.09.005 |
12 |
Han D , Kolli KK , Al'Aref SJ , et al. Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: From the PARADIGM registry[J]. J Am Heart Assoc, 2020, 9 (5): e013958.
doi: 10.1161/jaha.119.013958 |
13 |
Pham DL , Xu C , Prince JL . Current methods in medical image segmentation[J]. Annu Rev Biomed Eng, 2000, 2, 315- 337.
doi: 10.1146/annurev.bioeng.2.1.315 |
14 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]. MICCAI 2015, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28. |
15 |
Shaukat Z , Farooq QUA , Tu S , et al. A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture[J]. BMC Bioinformatics, 2022, 23 (1): 251.
doi: 10.1186/s12859-022-04794-9 |
16 |
Li D , Chu X , Cui Y , et al. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer[J]. Comput Methods Programs Biomed, 2022, 213, 106493.
doi: 10.1016/j.cmpb.2021.106493 |
17 |
Li C , Song X , Zhao H , et al. An 8-layer residual U-Net with deep supervision for segmentation of the left ventricle in cardiac CT angiography[J]. Comput Methods Programs Biomed, 2021, 200, 105876.
doi: 10.1016/j.cmpb.2020.105876 |
18 |
Lian L , Luo X , Pan C , et al. Lung image segmentation based on DRD U-Net and combined WGAN with Deep Neural Network[J]. Comput Methods Programs Biomed, 2022, 226, 107097.
doi: 10.1016/j.cmpb.2022.107097 |
19 |
Jiang L , Ou J , Liu R , et al. RMAU-Net: Residual multi-scale attention U-Net for liver and tumor segmentation in CT images[J]. Comput Biol Med, 2023, 158, 106838.
doi: 10.1016/j.compbiomed.2023.106838 |
20 |
Zhou Z , Siddiquee MMR , Tajbakhsh N , et al. UNet++: a nested U-Net architecture for medical image segmentation[J]. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), 2018, 11045, 3- 11.
doi: 10.1007/978-3-030-00889-5_1 |
21 |
Xu Y , Hou S , Wang X , et al. A medical image segmentation method based on improved UNet 3+ network[J]. Diagnostics (Basel), 2023, 13 (3): 576.
doi: 10.3390/diagnostics13030576 |
22 |
Isensee F , Jaeger PF , Kohl SAA , et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18 (2): 203- 211.
doi: 10.1038/s41592-020-01008-z |
23 |
Malhotra P , Gupta S , Koundal D , et al. Deep neural networks for medical image segmentation[J]. J Healthc Eng, 2022, 2022, 9580991.
doi: 10.1155/2022/9580991 |
24 |
van Ginneken B , Schaefer-Prokop CM , Prokop M . Computer-aided diagnosis: how to move from the laboratory to the clinic[J]. Radiology, 2011, 261 (3): 719- 732.
doi: 10.1148/radiol.11091710 |
25 |
Khav N , Ihdayhid AR , Ko B . CT-Derived Fractional Flow Reserve (CT-FFR) in the evaluation of coronary artery disease[J]. Heart Lung Circ, 2020, 29 (11): 1621- 1632.
doi: 10.1016/j.hlc.2020.05.099 |
26 | Balasubramanian PK , Lai WC , Seng GH , et al. APESTNet with mask R-CNN for liver tumor segmentation and classification[J]. Cancers (Basel), 2023, 15 (2): 33. |
27 |
Wang X , Li BB . Deep learning in head and neck tumor multiomics diagnosis and analysis: review of the literature[J]. Front Genet, 2021, 12, 624820.
doi: 10.3389/fgene.2021.624820 |
28 |
Turhan G , Küçük H , Isik EO . Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment[J]. Comput Methods Programs Biomed, 2022, 221, 106825.
doi: 10.1016/j.cmpb.2022.106825 |
29 |
Sahin ME , Ulutas H , Yuce E , et al. Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images[J]. Neural Comput Appl, 2023, 35 (18): 13597- 13611.
doi: 10.1007/s00521-023-08450-y |
30 |
Eisenberg E , McElhinney PA , Commandeur F , et al. Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects[J]. Circ Cardiovasc Imaging, 2020, 13 (2): e009829.
doi: 10.1161/circimaging.119.009829 |
31 |
van der Voort SR , Incekara F , Wijnenga MMJ , et al. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning[J]. Neuro Oncol, 2023, 25 (2): 279- 289.
doi: 10.1093/neuonc/noac166 |
32 |
Ouyang D , He B , Ghorbani A , et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580 (7802): 252- 256.
doi: 10.1038/s41586-020-2145-8 |
33 |
Ruijsink B , Puyol-Antón E , Oksuz I , et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function[J]. JACC Cardiovasc Imaging, 2020, 13 (3): 684- 695.
doi: 10.1016/j.jcmg.2019.05.030 |
34 | Knott KD , Seraphim A , Augusto JB , et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping[J]. Circulation, 2020, 141 (16): 1282- 1291. |
35 |
Aerts HJ , Velazquez ER , Leijenaar RT , et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5, 4006.
doi: 10.1038/ncomms5006 |
36 |
Baessler B , Luecke C , Lurz J , et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure[J]. Radiology, 2019, 292 (3): 608- 617.
doi: 10.1148/radiol.2019190101 |
37 |
Di Noto T , von Spiczak J , Mannil M , et al. Radiomics for distinguishing myocardial infarction from myocarditis at late gadolinium enhancement at MRI: comparison with subjective visual analysis[J]. Radiol Cardiothorac Imaging, 2019, 1 (5): e180026.
doi: 10.1148/ryct.2019180026 |
38 |
Sun Q , Chen Y , Liang C , et al. Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma[J]. Radiology, 2021, 301 (3): 654- 663.
doi: 10.1148/radiol.2021203281 |
39 |
Kickingereder P , Neuberger U , Bonekamp D , et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma[J]. Neuro Oncol, 2018, 20 (6): 848- 857.
doi: 10.1093/neuonc/nox188 |
40 |
Xi YB , Guo F , Xu ZL , et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma[J]. J Magn Reson Imaging, 2018, 47 (5): 1380- 1387.
doi: 10.1002/jmri.25860 |
41 |
Wang X , Xie T , Luo J , et al. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment[J]. Breast Cancer Res, 2022, 24 (1): 20.
doi: 10.1186/s13058-022-01516-0 |
42 | Honeycutt CE , Plotnick R . Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J]. Computers & Geosciences, 2008, 34 (11): 1461- 1472. |
43 | 徐子良, 郑敏文. 人工智能在心血管影像的应用现状与展望[J]. 中华放射学杂志, 2021, 55 (6): 5. |
44 | Fukushima K , Miyake S . Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition, Competition and cooperation in neural nets[M]. Berlin, Heidelberg: Springer, 1982. |
45 |
van der Velden BHM , Kuijf HJ , Gilhuijs KGA , et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis[J]. Med Image Anal, 2022, 79, 102470.
doi: 10.1016/j.media.2022.102470 |
46 |
Diprose WK , Buist N , Hua N , et al. Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator[J]. J Am Med Inform Assoc, 2020, 27 (4): 592- 600.
doi: 10.1093/jamia/ocz229 |
47 |
Alkhodari M , Jelinek HF , Karlas A H , et al. Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles[J]. Front Cardiovasc Med, 2021, 8, 755968.
doi: 10.3389/fcvm.2021.755968 |
[1] | 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20. |
[2] | 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133. |
[3] | 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89. |
[4] | 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45. |
[5] | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6. |
[6] | 林冰洁,王梅云. 深度学习在医学影像学中的研究现状及发展前景[J]. 山东大学学报 (医学版), 2023, 61(12): 21-29. |
[7] | 赵古月,尚靳,侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报 (医学版), 2023, 61(12): 30-35. |
[8] | 李骁,孙志远,张龙江. 影像人工智能在肺炎筛查、诊断及预测领域的应用研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 13-20. |
[9] | 聂佩,王锡明. 人工智能在心肌影像应用中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 1-6. |
[10] | 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96. |
[11] | 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5-9, 21. |
[12] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[13] | 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1-4. |
[14] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[15] | 尹义龙,袭肖明. 眼科疾病智能诊断方法最新进展[J]. 山东大学学报 (医学版), 2020, 58(11): 33-38. |
|