山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 13-20.doi: 10.6040/j.issn.1671-7554.0.2023.0803
• 医学影像人工智能的创新与挑战—专家综述 • 上一篇 下一篇
Xiao LI,Zhiyuan SUN,Longjiang ZHANG*()
摘要:
肺炎是继缺血性心脏病和脑血管疾病之后的全球第三大死因,是严重威胁人类健康的重大公共卫生问题,早期快速精准的病因学诊断及危险性预测是肺炎诊疗和防控的首要任务,但影像科医生工作量大、不同类型肺炎影像表现重叠等原因使得肺炎及时、快速、准确诊断与结局预测有较大挑战。人工智能(AI)在影像领域的迅速发展为解决上述临床难题带来希望。本文对AI在肺炎诊断中的最新研究成果进行综述,旨在探讨AI系统在肺炎筛查、诊断、预测领域的最新进展,展望其应用前景,为促进我国合理优化肺炎患者临床管理,提升肺炎智能诊疗水平提供参考。
中图分类号:
1 |
GBD Lower Respiratory Infections Collaborators , Troeger C , Forouzanfar M , Rao P , et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the global burden of disease study 2016[J]. Lancet Infect Dis, 2018, 18 (11): 1191- 1210.
doi: 10.1016/S1473-3099(18)30310-4 |
2 |
Cilloniz C , Albert RK , Liapikou A , et al. The effect of macrolide resistance on the presentation and outcome of patients hospitalized for Streptococcus pneumoniae pneumonia[J]. Am J Respir Crit Care Med, 2015, 191 (11): 1265- 1272.
doi: 10.1164/rccm.201502-0212OC |
3 |
Torres A , Blasi F , Peetermans WE , et al. The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review[J]. Eur J Clin Microbiol Infect Dis, 2014, 33 (7): 1065- 1079.
doi: 10.1007/s10096-014-2067-1 |
4 |
Cilloniz C , Ferrer M , Liapikou A , et al. Acute respiratory distress syndrome in mechanically ventilated patients with community-acquired pneumonia[J]. Eur Respir J, 2018, 51 (3): 1702215.
doi: 10.1183/13993003.02215-2017 |
5 |
Claessens YE , Debray MP , Tubach F , et al. Early chest computed tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired pneumonia[J]. Am J Respir Crit Care Med, 2015, 192 (8): 974- 982.
doi: 10.1164/rccm.201501-0017OC |
6 |
Ravizza S , Huschto T , Adamov A , et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data[J]. Nat Med, 2019, 25 (1): 57- 59.
doi: 10.1038/s41591-018-0239-8 |
7 |
Esteva A , Robicquet A , Ramsundar B , et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25 (1): 24- 29.
doi: 10.1038/s41591-018-0316-z |
8 |
Topol EJ . High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25 (1): 44- 56.
doi: 10.1038/s41591-018-0300-7 |
9 |
Ma JC , Song Y , Tian X , et al. Survey on deep learning for pulmonary medical imaging[J]. Front Med, 2020, 14 (4): 450- 469.
doi: 10.1007/s11684-019-0726-4 |
10 |
Chassagnon G , Vakalopolou M , Paragios N , et al. Deep learning: definition and perspectives for thoracic imaging[J]. Eur Radiol, 2020, 30 (4): 2021- 2030.
doi: 10.1007/s00330-019-06564-3 |
11 |
Mostafa FA , Elrefaei LA , Fouda MM , et al. A survey on AI techniques for thoracic diseases diagnosis using medical images[J]. Diagnostics, 2022, 12 (12): 3034.
doi: 10.3390/diagnostics12123034 |
12 |
Yamashita R , Nishio M , Do RKG , et al. Convolutional neural networks: an overview and application in radiology[J]. Insights Imaging, 2018, 9 (4): 611- 629.
doi: 10.1007/s13244-018-0639-9 |
13 |
Donahue J , Hendricks LA , Rohrbach M , et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39 (4): 677- 691.
doi: 10.1109/TPAMI.2016.2599174 |
14 | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Advances in neural information processing systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014[C]. Montreal: Curran Associates, Inc., 2014. |
15 | Wang XS, Peng YF, Lu L, et al. ChestX-Ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common Thorax diseases[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 3462-3471. doi: 10.1109/CVPR.2017.369. |
16 |
Bustos A , Pertusa A , Salinas JM , et al. PadChest: a large chest X-ray image dataset with multi-label annotated reports[J]. Med Image Anal, 2020, 66, 101797.
doi: 10.1016/j.media.2020.101797 |
17 |
Wang LD , Lin ZQ , Wong A . COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J]. Sci Rep, 2020, 10 (1): 19549.
doi: 10.1038/s41598-020-76550-z |
18 |
Rahman T , Khandakar A , Qiblawey Y , et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images[J]. Comput Biol Med, 2021, 132, 104319.
doi: 10.1016/j.compbiomed.2021.104319 |
19 |
Johnson AEW , Pollard TJ , Berkowitz SJ , et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports[J]. Sci Data, 2019, 6 (1): 317.
doi: 10.1038/s41597-019-0322-0 |
20 |
Kermany DS , Goldbaum M , Cai WJ , et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172 (5): 1122- 1131.
doi: 10.1016/j.cell.2018.02.010 |
21 |
Dong X , Lei Y , Wang TH , et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN[J]. Med Phys, 2019, 46 (5): 2157- 2168.
doi: 10.1002/mp.13458 |
22 |
Park J , Yun J , Kim N , et al. Fully automated lung lobe segmentation in volumetric chest CT with 3D U-net: validation with intra- and extra-datasets[J]. J Digit Imaging, 2020, 33 (1): 221- 230.
doi: 10.1007/s10278-019-00223-1 |
23 |
Yun J , Park J , Yu D , et al. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net[J]. Med Image Anal, 2019, 51, 13- 20.
doi: 10.1016/j.media.2018.10.006 |
24 |
Allioui H , Mohammed MA , Benameur N , et al. A multi-agent deep reinforcement learning approach for enhancement of COVID-19 CT image segmentation[J]. J Pers Med, 2022, 12 (2): 309.
doi: 10.3390/jpm12020309 |
25 |
Dey N , Zhang YD , Rajinikanth V , et al. Customized VGG19 architecture for pneumonia detection in chest X-rays[J]. Pattern Recognit Lett, 2021, 143, 67- 74.
doi: 10.1016/j.patrec.2020.12.010 |
26 | El Asnaoui K, Chawki Y, Idri A. Automated methods for detection and classification pneumonia based on X-ray images using deep learning[M]// Artificial Intelligence and Blockchain for Future Cybersecurity Applications. Cham: Springer, 2021: 257-284.10.1007/978-3-030-74575-2_14. |
27 |
Wang S , Kang B , Ma JL , et al. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19)[J]. Eur Radiol, 2021, 31 (8): 6096- 6104.
doi: 10.1007/s00330-021-07715-1 |
28 |
McCall B . COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread[J]. Lancet Digit Health, 2020, 2 (4): e166- e167.
doi: 10.1016/S2589-7500(20)30054-6 |
29 |
Ni QQ , Sun ZY , Qi L , et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images[J]. Eur Radiol, 2020, 30 (12): 6517- 6527.
doi: 10.1007/s00330-020-07044-9 |
30 |
Chen X , Zhang G , Hao SY , et al. Similarities and differences of early pulmonary CT features of pneumonia caused by SARS-CoV-2, SARS-CoV and MERS-CoV: comparison based on a systemic review[J]. Chin Med Sci J, 2020, 35 (3): 254- 261.
doi: 10.24920/003727 |
31 |
Fowlkes A , Steffens A , Temte J , et al. Incidence of medically attended influenza during pandemic and post-pandemic seasons through the Influenza Incidence Surveillance Project, 2009-13[J]. Lancet Respir Med, 2015, 3 (9): 709- 718.
doi: 10.1016/S2213-2600(15)00278-7 |
32 |
Bai HX , Wang R , Xiong Z , et al. Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT[J]. Radiology, 2020, 296 (3): E156- E165.
doi: 10.1148/radiol.2020201491 |
33 |
Wang YL , Gao D , Geng ZJ , et al. Radiomics nomogram analyses for differentiating pneumonia and acute paraquat lung injury[J]. Sci Rep, 2019, 9 (1): 15029.
doi: 10.1038/s41598-019-50886-7 |
34 |
Gao L , Li YZ , Zhai ZG , et al. Radiomics study on pulmonary infarction mimicking community-acquired pneumonia[J]. Clin Respir J, 2021, 15 (6): 661- 669.
doi: 10.1111/crj.13341 |
35 |
Mamalakis M , Swift AJ , Vorselaars B , et al. DenResCov-19: a deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays[J]. Comput Med Imaging Graph, 2021, 94, 102008.
doi: 10.1016/j.compmedimag.2021.102008 |
36 |
Huang YL , Zhang ZG , Liu SY , et al. CT-based radiomics combined with signs: a valuable tool to help radiologist discriminate COVID-19 and influenza pneumonia[J]. BMC Med Imaging, 2021, 21 (1): 31.
doi: 10.1186/s12880-021-00564-w |
37 |
Zhang K , Liu X , Shen J , et al. Clinically applicable AI System for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography[J]. Cell, 2020, 181 (6): 1423- 1433.
doi: 10.1016/j.cell.2020.04.045 |
38 | Chen W , Xiong X , Xie B , et al. Pulmonary invasive fungal disease and bacterial pneumonia: a comparative study with high-resolution CT[J]. Am J Transl Res, 2019, 11 (7): 4542- 4551. |
39 |
Li X , Fang X , Bian Y , et al. Comparison of chest CT findings between COVID-19 pneumonia and other types of viral pneumonia: a two-center retrospective study[J]. Eur Radiol, 2020, 30 (10): 5470- 5478.
doi: 10.1007/s00330-020-06925-3 |
40 |
Fang X , Li X , Bian Y , et al. Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2[J]. Eur Radiol, 2020, 30 (12): 6888- 6901.
doi: 10.1007/s00330-020-07032-z |
41 |
Kim J , Kim J , Kim G , et al. Clinical validation of a deep learning algorithm for detection of pneumonia on chest radiographs in emergency department patients with acute febrile respiratory illness[J]. J Clin Med, 2020, 9 (6): 1981.
doi: 10.3390/jcm9061981 |
42 |
Wang G , Liu X , Shen J , et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images[J]. Nat Biomed Eng, 2021, 5 (6): 509- 521.
doi: 10.1038/s41551-021-00704-1 |
43 |
Matsuo K , Purushotham S , Jiang B , et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model[J]. Am J Obstet Gynecol, 2019, 220 (4): 381.
doi: 10.1016/j.ajog.2018.12.030 |
44 | 程召平, 段艳华, 姚金坤, 等. 105例新型冠状病毒感染胸部CT影像学特征—山东省多中心回顾性分析[J]. 山东大学学报(医学版), 2020, 58 (5): 38- 45. |
CHENG Zhaoping , DUAN Yanhua , YAO Jinkun , et al. Chest CT features of 105 patients with COVID-19: a multicenter retrospective study in Shandong Province[J]. Journal of Shandong University (Health Sciences), 2020, 58 (5): 38- 45. | |
45 |
Aboutalebi H , Pavlova M , Shafiee MJ , et al. COVID-net CXR-S: deep convolutional neural network for severity assessment of COVID-19 cases from chest X-ray images[J]. Diagnostics, 2021, 12 (1): 25.
doi: 10.3390/diagnostics12010025 |
46 |
Liang W , Yao J , Chen A , et al. Early triage of critically ill COVID-19 patients using deep learning[J]. Nat Commun, 2020, 11 (1): 3543- 3549.
doi: 10.1038/s41467-020-17280-8 |
47 |
Xu Q , Zhan X , Zhou Z , et al. AI-based analysis of CT images for rapid triage of COVID-19 patients[J]. NPJ Digit Med, 2021, 4 (1): 75.
doi: 10.1038/s41746-021-00446-z |
48 |
Marboub D , Abbasi T , Maasmi F , et al. Blockchain for COVID-19: review, opportunities, and a trusted tracking system[J]. Arab J Sci Eng, 2020, 45 (12): 9895- 9911.
doi: 10.1007/s13369-020-04950-4 |
49 |
Kim D , Jang H , Kim K , et al. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers[J]. Korean J Radiol, 2019, 20 (3): 405- 410.
doi: 10.3348/kjr.2019.0025 |
50 |
INFANT Collaborative Group . Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial[J]. Lancet, 2017, 389 (10080): 1719- 1729.
doi: 10.1016/S0140-6736(17)30568-8 |
[1] | 李波波 李道堂 刘曙光 王兴武. 食管癌患者血清中DKK-1的表达[J]. 山东大学学报(医学版), 2209, 47(6): 58-61. |
[2] | 王欣,邢春燕,杨艳平. 血清磷酸丙酮酸水合酶检测对诊断侵袭性白念珠菌感染的临床价值[J]. 山东大学学报(医学版), 2209, 47(6): 92-94. |
[3] | 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64. |
[4] | 于婷,李媛,吴梅. 超声诊断羊膜带综合征并胎头离断1例[J]. 山东大学学报 (医学版), 2023, 61(8): 122-124. |
[5] | 魏俊杰,岳蔷薇,孙立锋. 新发BTK基因缺失突变1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(8): 74-78. |
[6] | 杨文欣,刘英姣,高雅,杨安逸,周恒宇,高俊茶. 以急性胰腺炎为首发表现的急性髓系白血病1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(7): 109-117. |
[7] | 杨庆婵,王咏梅,王承志. 急性纤维素性机化性肺炎3例病理特征及文献复习[J]. 山东大学学报 (医学版), 2023, 61(6): 58-64. |
[8] | 靳新娟,左立平,邓展昊,李安宁,于德新. MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值[J]. 山东大学学报 (医学版), 2023, 61(6): 79-86. |
[9] | 曹广磊,李季,闫飞,林鹏,侯为开,侯新国,陈丽. 甲状腺激素抵抗综合征伴高泌乳素血症1例[J]. 山东大学学报 (医学版), 2023, 61(6): 113-116. |
[10] | 张蒙,马伟. 1990—2019年中国人类免疫缺陷病毒/获得性免疫缺陷综合征流行趋势及疾病负担[J]. 山东大学学报 (医学版), 2023, 61(5): 84-89. |
[11] | 蔡强,单悌超,吴晗. 临终病情评估单预测临终患者生存期的效果[J]. 山东大学学报 (医学版), 2023, 61(5): 79-83. |
[12] | 唐小雨,王云彦,史有奎,王敏. 肉芽肿性多血管炎继发肥厚性硬脑膜炎1例[J]. 山东大学学报 (医学版), 2023, 61(5): 122-124. |
[13] | 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67. |
[14] | 殷钏杰,陈国玲,康随芳,张琪晨,曹媛,王晓映,张飞雪. 脉络膜黑色素瘤伴视网膜脱离1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(5): 119-121. |
[15] | 刘士标,张淑君,李培龙,杜鲁涛,王传新. cg20657709位点甲基化对肺腺癌早期诊断的初步探讨[J]. 山东大学学报 (医学版), 2023, 61(4): 18-25. |
|