您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 79-86.doi: 10.6040/j.issn.1671-7554.0.2022.1151

• 临床医学 • 上一篇    

MRI影像组学对135例肝癌耐药蛋白PFKFB3的预测价值

靳新娟,左立平,邓展昊,李安宁,于德新   

  1. 山东大学齐鲁医院放射科, 山东 济南 250012
  • 发布日期:2023-06-06
  • 通讯作者: 于德新. E-mail:yudexin0330@sina.com

Value of enhanced MRI radiomics in predicting the drug-resistant protein PFKFB3 in 135 cases of hepatocellular carcinoma

JIN Xinjuan, ZUO Liping, DENG Zhanhao, LI Anning, YU Dexin   

  1. Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2023-06-06

摘要: 目的 探讨原发性肝细胞肝癌(HCC)MRI强化特点、影像组学特征与癌组织中PFKFB3表达的相关性,建立HCC耐药相关蛋白的影像组学预测模型。 方法 回顾性分析2015年1月至2020年12月接受手术治疗并行术前增强MRI HCC患者135例,统计患者的临床数据(年龄、性别、吸烟史、饮酒史、丙氨酸氨基转移酶、天冬氨酸氨基转移酶、甲胎蛋白、病理分级、乙型肝炎病毒感染)、传统影像学指标(肿瘤大小、包膜、动脉期强化特征、肿瘤坏死、门静脉侵犯、肿瘤供血类型、出血、肝内卫星灶、动脉期肿瘤-肝差异)及影像组学特征,并通过免疫组织化学法检测PFKFB3表达。二元Logistic分析筛选出独立预测因素(P<0.05),根据筛选后的训练集特征构建影像组学预测模型。利用受试者工作特征(ROC)曲线评估预测模型的准确性并在验证集中进行验证。 结果 HCC患者丙氨酸氨基转移酶(OR=0.36, 95%CI:0.16~0.83, P=0.017)及肝内卫星灶(OR=6.89, 95%CI:1.76~27.03, P=0.006)是PFKFB3阳性表达的独立预测因子,MRI影像组学模型训练集AUC值为0.99,在验证集AUC值为0.80、95%CI为0.61~1.00、灵敏度为0.78、特异度为0.75。 结论 增强MRI影像组学预测模型可一定程度预测原发性HCC中PFKFB3的表达,可为HCC治疗肿瘤耐药提供重要的信息。

关键词: 肝细胞肝癌, 耐药, PFKFB3, 影像组学, 磁共振成像

Abstract: Objective To investigate the correlation between MRI enhancement features, radiomics characteristics and PFKFB3 expression in primary hepatocellular carcinoma(HCC)tissue, and to establish a radiomics prediction model for drug-resistant related proteins of HCC. Methods Information of 135 HCC patients who received preoperative multiphase MRI and surgical resection during Jan. 2015 and Dec. 2020 was retrospectively analyzed. The clinical data(age, gender, history of smoking and drinking, alanine aminotransferase, aspartate transaminase, alpha-fetoprotein, pathologic stage and hepatitis B infection), conventional imaging features(tumor size, capsular, enhancement characteristics in arterial phase, necrosis, portal vein invasion, blood-supply type, hemorrhage, intrahepatic satellite foci and arterial tumor-liver differences in arterial phase), and radiomic features were recorded. The expression of PFKFB3 was detected with immunohistochemistry. The independent predictors were screened with multivariate analysis(P<0.05). The radiomics prediction model was constructed based on the features of the selected training set. The receiver operating characteristic(ROC)curve was drawn. The accuracy of the prediction model was evaluated with the area under the curve(AUC)and verified in the validation set. Results Alanine aminotransferase(OR=0.36, 95%CI:0.16-0.83, P=0.017)and the presence of intrahepatic satellite foci(OR=6.89, 95%CI:1.76-27.03, P=0.006)were independent predictors of positive PFKFB3 expression. The AUC of the MRI radiomics model was 0.99 in the training set and 0.80 in the validation set, with 95%CI of 0.61-1.00, sensitivity of 0.78 and specificity of 0.75. Conclusion The model of enhanced MRI radiomics can predict the expression of PFKFB3 in primary HCC, which can provide important information of tumor drug resistance in the treatment of HCC.

Key words: Hepatocellular carcinoma, Drug resistance, PFKFB3, Radiomics, Magnetic resonance imaging

中图分类号: 

  • R575
[1] Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158.
[2] 国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303. General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer(2022 edition)[J]. Journal of Clinical Hepatobiliary Diseases, 2022, 38(2): 288-303.
[3] Shi L, Pan H, Liu Z, et al. Roles of PFKFB3 in cancer[J]. Signal Transduct Target Ther, 2017, 2: 17044. doi: 10.1038/sigtrans.2017.44.
[4] Long Q, Zou X, Song Y, et al. PFKFB3/HIF-1α feedback loop modulates sorafenib resistance in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2019, 513(3): 642-650.
[5] Shen YC, Ou DL, Hsu C, et al. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma[J]. Br J Cancer, 2013, 108(1): 72-81.
[6] Chen J, Jin R, Zhao J, et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma[J]. Cancer Lett, 2015, 367(1): 1-11.
[7] Zhang HL, Wang MD, Zhou X, et al. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment[J]. Cancer Lett, 2017, 388: 1-11. doi:10.1016/j.canlet.2016.11.023.
[8] 刘文斌, 荚卫东.《原发性肝癌诊疗规范(2019年版)》解读[J]. 肝胆外科杂志, 2020, 28(6): 468-472. LIU Wenbin, JIA Weidong. Interpretation of the Code of Practice for the Treatment of Primary Liver Cancer(2019 Edition)[J]. Journal of Hepatobiliary Surgery, 2020, 28(6): 468-472.
[9] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
[10] Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4): 317-370.
[11] Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144.
[12] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
[13] Hu XX, Yang ZX, Liang HY, et al. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: correlations with Ki-67 labeling index[J]. J Magn Reson Imaging, 2017, 46(2): 383-392.
[14] Li Y, Yan C, Weng S, et al. Texture analysis of multi-phase MRI images to detect expression of Ki67 in hepatocellular carcinoma[J]. Clin Radiol, 2019, 74(10): 813.e19-813.e27.
[15] Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5): 3004-3014.
[16] Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769.
[17] Minchenko A, Leshchinsky I, Opentanova I, et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3(PFKFB3)gene. Its possible role in the Warburg effect[J]. J Biol Chem, 2002, 277(8): 6183-6187.
[18] Uyeda K, Furuya E, Luby LJ. The effect of natural and synthetic D-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinases[J]. J Biol Chem, 1981, 256(16): 8394-8399.
[19] Van Schaftingen E, Hers HG. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate[J]. Proc Natl Acad Sci U S A, 1981, 78(5): 2861-2863.
[20] De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting[J]. Cell, 2013, 154(3): 651-663.
[21] Xu Y, An X, Guo X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1231-1239.
[22] Moens S, Goveia J, Stapor PC, et al. The multifaceted activity of VEGF in angiogenesis-Implications for therapy responses[J]. Cytokine Growth Factor Rev, 2014, 25(4): 473-482.
[23] Carmeliet P, Jain R K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10(6): 417-427.
[24] Mazzone M, Dettori D, de Oliveira R L, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization[J]. Cell, 2009, 136(5): 839-851.
[25] Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia[J]. Cancer Cell, 2014, 26(5): 605-622.
[26] Cantelmo AR, Conradi LC, Brajic A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy[J]. Cancer Cell, 2016, 30(6): 968-985.
[27] 丁千山, 孙荣泽, 王笑臣, 等. 使用GEO数据集分析PFKFB3在肝细胞癌中的表达及临床意义[J]. 世界华人消化杂志, 2014, 22(24): 3675-3680. DING Qianshan, SUN Rongze, WANG Xiaochen, et al. Analysis of PFKFB3 expression and clinical significance in hepatocellular carcinoma using the GEO dataset[J]. World Journal of Chinese Gastroenterology, 2014, 22(24): 3675-3680.
[1] 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102.
[2] 刘娜,王娜娜,纪冰,丁雪梅,刘雅鑫,房晓庆,张晓丽. 2012—2021年住院老年患者感染病原菌分布及耐药趋势[J]. 山东大学学报 (医学版), 2023, 61(6): 29-40.
[3] 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67.
[4] 王磊,张帅,刘钢,由胜男,王植,朱珊,陈超,马信龙,杨强. MRI诊断140例腰椎智能网络自动检测分型MCs方法的比较[J]. 山东大学学报 (医学版), 2023, 61(3): 71-79.
[5] 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94.
[6] 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26.
[7] 赵恩举,赵硕,郭云亮,王锡明. 282例颈动脉钙化与脑小血管病MRI总负荷评分的关联性[J]. 山东大学学报 (医学版), 2023, 61(1): 38-44.
[8] 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65.
[9] 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75.
[10] 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50.
[11] 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95.
[12] 孙薏丰,李伟,孙士营,顾安曼,谭胜楠,傅勋业,王海志,纪建粉,关于旺,吴向前,贺志成,温招阳,于尚嘉,李世易,刘兴红,陈英,王婷婷,孙允东. 2016—2021年山东省11个地区摩根摩根菌的抗生素耐药变迁[J]. 山东大学学报 (医学版), 2022, 60(12): 88-93.
[13] 李燕,刘静,李娟,杨秋红. 50例孕产妇血流感染临床特征及胎盘病理分析[J]. 山东大学学报 (医学版), 2022, 60(1): 48-54.
[14] 鞠建华,杨镇业,李青连,韩亚楠,李艳青,乔伊君,杨虎,张华然. 微生物药物研究开发现状与思考[J]. 山东大学学报 (医学版), 2021, 59(9): 43-50.
[15] 哈春芳,李茹月. 卵巢癌耐药机制与靶向治疗策略的研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!