山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 79-86.doi: 10.6040/j.issn.1671-7554.0.2022.1151
• 临床医学 • 上一篇
靳新娟,左立平,邓展昊,李安宁,于德新
JIN Xinjuan, ZUO Liping, DENG Zhanhao, LI Anning, YU Dexin
摘要: 目的 探讨原发性肝细胞肝癌(HCC)MRI强化特点、影像组学特征与癌组织中PFKFB3表达的相关性,建立HCC耐药相关蛋白的影像组学预测模型。 方法 回顾性分析2015年1月至2020年12月接受手术治疗并行术前增强MRI HCC患者135例,统计患者的临床数据(年龄、性别、吸烟史、饮酒史、丙氨酸氨基转移酶、天冬氨酸氨基转移酶、甲胎蛋白、病理分级、乙型肝炎病毒感染)、传统影像学指标(肿瘤大小、包膜、动脉期强化特征、肿瘤坏死、门静脉侵犯、肿瘤供血类型、出血、肝内卫星灶、动脉期肿瘤-肝差异)及影像组学特征,并通过免疫组织化学法检测PFKFB3表达。二元Logistic分析筛选出独立预测因素(P<0.05),根据筛选后的训练集特征构建影像组学预测模型。利用受试者工作特征(ROC)曲线评估预测模型的准确性并在验证集中进行验证。 结果 HCC患者丙氨酸氨基转移酶(OR=0.36, 95%CI:0.16~0.83, P=0.017)及肝内卫星灶(OR=6.89, 95%CI:1.76~27.03, P=0.006)是PFKFB3阳性表达的独立预测因子,MRI影像组学模型训练集AUC值为0.99,在验证集AUC值为0.80、95%CI为0.61~1.00、灵敏度为0.78、特异度为0.75。 结论 增强MRI影像组学预测模型可一定程度预测原发性HCC中PFKFB3的表达,可为HCC治疗肿瘤耐药提供重要的信息。
中图分类号:
[1] Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. [2] 国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303. General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer(2022 edition)[J]. Journal of Clinical Hepatobiliary Diseases, 2022, 38(2): 288-303. [3] Shi L, Pan H, Liu Z, et al. Roles of PFKFB3 in cancer[J]. Signal Transduct Target Ther, 2017, 2: 17044. doi: 10.1038/sigtrans.2017.44. [4] Long Q, Zou X, Song Y, et al. PFKFB3/HIF-1α feedback loop modulates sorafenib resistance in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2019, 513(3): 642-650. [5] Shen YC, Ou DL, Hsu C, et al. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma[J]. Br J Cancer, 2013, 108(1): 72-81. [6] Chen J, Jin R, Zhao J, et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma[J]. Cancer Lett, 2015, 367(1): 1-11. [7] Zhang HL, Wang MD, Zhou X, et al. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment[J]. Cancer Lett, 2017, 388: 1-11. doi:10.1016/j.canlet.2016.11.023. [8] 刘文斌, 荚卫东.《原发性肝癌诊疗规范(2019年版)》解读[J]. 肝胆外科杂志, 2020, 28(6): 468-472. LIU Wenbin, JIA Weidong. Interpretation of the Code of Practice for the Treatment of Primary Liver Cancer(2019 Edition)[J]. Journal of Hepatobiliary Surgery, 2020, 28(6): 468-472. [9] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. [10] Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4): 317-370. [11] Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. [12] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. [13] Hu XX, Yang ZX, Liang HY, et al. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: correlations with Ki-67 labeling index[J]. J Magn Reson Imaging, 2017, 46(2): 383-392. [14] Li Y, Yan C, Weng S, et al. Texture analysis of multi-phase MRI images to detect expression of Ki67 in hepatocellular carcinoma[J]. Clin Radiol, 2019, 74(10): 813.e19-813.e27. [15] Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5): 3004-3014. [16] Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769. [17] Minchenko A, Leshchinsky I, Opentanova I, et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3(PFKFB3)gene. Its possible role in the Warburg effect[J]. J Biol Chem, 2002, 277(8): 6183-6187. [18] Uyeda K, Furuya E, Luby LJ. The effect of natural and synthetic D-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinases[J]. J Biol Chem, 1981, 256(16): 8394-8399. [19] Van Schaftingen E, Hers HG. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate[J]. Proc Natl Acad Sci U S A, 1981, 78(5): 2861-2863. [20] De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting[J]. Cell, 2013, 154(3): 651-663. [21] Xu Y, An X, Guo X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1231-1239. [22] Moens S, Goveia J, Stapor PC, et al. The multifaceted activity of VEGF in angiogenesis-Implications for therapy responses[J]. Cytokine Growth Factor Rev, 2014, 25(4): 473-482. [23] Carmeliet P, Jain R K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10(6): 417-427. [24] Mazzone M, Dettori D, de Oliveira R L, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization[J]. Cell, 2009, 136(5): 839-851. [25] Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia[J]. Cancer Cell, 2014, 26(5): 605-622. [26] Cantelmo AR, Conradi LC, Brajic A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy[J]. Cancer Cell, 2016, 30(6): 968-985. [27] 丁千山, 孙荣泽, 王笑臣, 等. 使用GEO数据集分析PFKFB3在肝细胞癌中的表达及临床意义[J]. 世界华人消化杂志, 2014, 22(24): 3675-3680. DING Qianshan, SUN Rongze, WANG Xiaochen, et al. Analysis of PFKFB3 expression and clinical significance in hepatocellular carcinoma using the GEO dataset[J]. World Journal of Chinese Gastroenterology, 2014, 22(24): 3675-3680. |
[1] | 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102. |
[2] | 刘娜,王娜娜,纪冰,丁雪梅,刘雅鑫,房晓庆,张晓丽. 2012—2021年住院老年患者感染病原菌分布及耐药趋势[J]. 山东大学学报 (医学版), 2023, 61(6): 29-40. |
[3] | 刘艳,冷珊珊,夏晓娜,董昊,黄陈翠,孟祥水. 基于影像组学参数评估376例幕上自发性脑出血患者的功能状态[J]. 山东大学学报 (医学版), 2023, 61(5): 59-67. |
[4] | 王磊,张帅,刘钢,由胜男,王植,朱珊,陈超,马信龙,杨强. MRI诊断140例腰椎智能网络自动检测分型MCs方法的比较[J]. 山东大学学报 (医学版), 2023, 61(3): 71-79. |
[5] | 杨咏青,赵鹏,汪玉,马文静,田迷迷,程亚旎,祖璐,林祥涛. 细胞外容积分数对62例不同病理类型肺癌的诊断价值[J]. 山东大学学报 (医学版), 2023, 61(2): 88-94. |
[6] | 张建树,张瀚文,赵文静. 长链非编码RNA ZNF528-AS1促进乳腺癌他莫昔芬耐药及进展转移[J]. 山东大学学报 (医学版), 2023, 61(1): 17-26. |
[7] | 赵恩举,赵硕,郭云亮,王锡明. 282例颈动脉钙化与脑小血管病MRI总负荷评分的关联性[J]. 山东大学学报 (医学版), 2023, 61(1): 38-44. |
[8] | 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65. |
[9] | 袁宏涛,纪淙山,康冰,秦松楠,于鑫鑫,高琳,王锡明. CT影像组学对肾上腺乏脂腺瘤与结节样增生的诊断价值[J]. 山东大学学报 (医学版), 2022, 60(4): 68-75. |
[10] | 冯宝民,王舟,徐晗,李佳存,于乔文,修建军. 抗髓鞘少突胶质细胞糖蛋白IgG抗体相关疾病临床及影像特征[J]. 山东大学学报 (医学版), 2022, 60(3): 45-50. |
[11] | 左立平,蒋丰洋,周斌彬,范金蕾,梁永锋,邓展昊,于德新. 术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J]. 山东大学学报 (医学版), 2022, 60(3): 89-95. |
[12] | 孙薏丰,李伟,孙士营,顾安曼,谭胜楠,傅勋业,王海志,纪建粉,关于旺,吴向前,贺志成,温招阳,于尚嘉,李世易,刘兴红,陈英,王婷婷,孙允东. 2016—2021年山东省11个地区摩根摩根菌的抗生素耐药变迁[J]. 山东大学学报 (医学版), 2022, 60(12): 88-93. |
[13] | 李燕,刘静,李娟,杨秋红. 50例孕产妇血流感染临床特征及胎盘病理分析[J]. 山东大学学报 (医学版), 2022, 60(1): 48-54. |
[14] | 鞠建华,杨镇业,李青连,韩亚楠,李艳青,乔伊君,杨虎,张华然. 微生物药物研究开发现状与思考[J]. 山东大学学报 (医学版), 2021, 59(9): 43-50. |
[15] | 哈春芳,李茹月. 卵巢癌耐药机制与靶向治疗策略的研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 117-123. |
|