山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 21-29.doi: 10.6040/j.issn.1671-7554.0.2023.0774
• 医学影像人工智能的创新与挑战—专家综述 • 上一篇 下一篇
Bingjie LIN1,2,Meiyun WANG1,2,3,*()
摘要:
精准医疗,影像先行;精准影像,技术先行。近年来,随着人工智能的迅速发展,深度学习作为其重要分支,已广泛应用于信号处理、计算机视觉和自然语言处理等诸多领域,其中基于深度学习的医学影像数据分割、疾病检测及预后预测等已成为众多学者研究的热点。本文将简要概述深度学习在医学影像学主要技术领域的应用现状,并分析其在医学影像学临床应用中所面临的挑战与发展前景,旨在为深度学习算法的临床转化提供参考。
中图分类号:
1 |
Ensmenger N . Is chess the drosophila of artificial intelligence? A social history of an algorithm[J]. Soc Stud Sci, 2012, 42 (1): 5- 30.
doi: 10.1177/0306312711424596 |
2 | 袁灵, 成思航, 苏童, 等. 医学影像学的研究进展综述[J]. 中国科学: 生命科学, 2021, 51 (8): 1130- 1139. |
YUAN Ling , CHENG Sihang , SU Tong , et al. A review of the research progress of medical imaging (in Chinese)[J]. Sci Sin Vitae, 2021, 51 (8): 1130- 1139. | |
3 |
Mazurowski MA , Buda M , Saha A , et al. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI[J]. J Magn Reson Imaging, 2019, 49 (4): 939- 954.
doi: 10.1002/jmri.26534 |
4 |
Chan HP , Samala RK , Hadjiiski LM , et al. Deep learning in medical image analysis[J]. J Magn Reson Imaging, 2020, 1213, 3- 21.
doi: 10.1007/978-3-030-33128-3_1 |
5 |
Karar ME , Hemdan EED , Shouman MA . Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans[J]. Complex Intell Systems, 2021, 7 (1): 235- 247.
doi: 10.1007/s40747-020-00199-4 |
6 |
Erickson BJ , Korfiatis P , Akkus Z , et al. Machine learning for medical imaging[J]. Radiographics, 2017, 37 (2): 505- 515.
doi: 10.1148/rg.2017160130 |
7 |
Khan FA , Majidulla A , Tavaziva G , et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease[J]. The Lancet Digit Health, 2020, 2 (11): e573- e581.
doi: 10.1016/S2589-7500(20)30221-1 |
8 |
Wang GY , Liu XH , Shen J , et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images[J]. Nat Biomed Eng, 2021, 5 (6): 509- 521.
doi: 10.1038/s41551-021-00704-1 |
9 |
Weiss J , Raghu VK , Bontempi D , et al. Deep learning to estimate lung disease mortality from chest radiographs[J]. Nat Commun, 2023, 14 (1): 2797.
doi: 10.1038/s41467-023-37758-5 |
10 |
Cicero M , Bilbily A , Colak E , et al. Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs[J]. Invest Radiol, 2017, 52 (5): 281- 287.
doi: 10.1097/RLI.0000000000000341 |
11 |
Seah JCY , Tang CHM , Buchlak QD , et al. Effect of a comprehensive deep-learning model on the accuracy of chest X-ray interpretation by radiologists: a retrospective, multireader multicase study[J]. The Lancet Digit Health, 2021, 3 (8): e496- e506.
doi: 10.1016/S2589-7500(21)00106-0 |
12 |
Hosny A , Parmar C , Quackenbush J , et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18 (8): 500- 510.
doi: 10.1038/s41568-018-0016-5 |
13 |
Lehman CD , Yala A , Schuster T , et al. Mammographic breast density assessment using deep learning: clinical implementation[J]. Radiology, 2019, 290 (1): 52- 58.
doi: 10.1148/radiol.2018180694 |
14 |
Vachon CM , Scott CG , Norman AD , et al. Impact of artificial intelligence system and volumetric density on risk prediction of interval, screen-detected, and advanced breast cancer[J]. J Clin Oncol, 2023, 41 (17): 3172- 3183.
doi: 10.1200/JCO.22.01153 |
15 | 欧阳汝珊, 李霖, 林小慧, 等. 基于乳腺X线摄影的深度学习技术鉴别乳腺影像报告和数据系统3类与4类疾病的价值[J]. 中华放射学杂志, 2023, 57 (2): 166- 172. |
OUYANG Rushan , LI Lin , LIN Xiaohui , et al. The value of deep learning technology based on mammography in differentiating breast imaging reporting and data system category 3 and 4 lesions[J]. Chinese Journal of Radiology, 2023, 57 (2): 166- 172. | |
16 | 彭卫军, 顾雅佳, 龚敬. 人工智能在乳腺肿瘤影像中的应用现状及展望[J]. 中华放射学杂志, 2023, 57 (2): 121- 124. |
PENG Weijun , GU Yajia , GONG Jing . Application prospects of artificial intelligence technology in breast imaging[J]. Chinese Journal of Radiology, 2023, 57 (2): 121- 124. | |
17 | 黄泽青, 刘予豪, 方汉军, 等. 基于深度迁移学习模型实现股骨头坏死与其他髋部疾病的X线片鉴别诊断[J]. 中华骨科杂志, 2023, 43 (1): 72- 80. |
HUANG Zeqing , LIU Yuhao , FANG Hanjun , et al. A deep transfer learning method using plain radiographs for the differential diagnosis of osteonecrosis of the femoral head with other hip diseases[J]. Chinese Journal of Orthopaedics, 2023, 43 (1): 72- 80. | |
18 |
Cheng CT , Wang YR , Chen HW , et al. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs[J]. Nat Commun, 2021, 12 (1): 1066.
doi: 10.1038/s41467-021-21311-3 |
19 |
Mao LT , Xia ZQ , Pan L , et al. Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population[J]. Front Endocrinol, 2022, 13, 971877.
doi: 10.3389/fendo.2022.971877 |
20 |
Al Arif S M M R , Knapp K , Slabaugh G . Fully automatic cervical vertebrae segmentation framework for X-ray images[J]. Computer Methods and Programs in Biomedicine, 2018, 157, 95- 111.
doi: 10.1016/j.cmpb.2018.01.006 |
21 |
Venkadesh KV , Setio AAA , Schreuder A , et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT[J]. Radiology, 2021, 300 (2): 438- 447.
doi: 10.1148/radiol.2021204433 |
22 |
Bianconi F , Fravolini M L , Pizzoli S , et al. Comparative evaluation of conventional and deep learning methods for semi-automated segmentation of pulmonary nodules on CT[J]. Quant Imaging Med Surg, 2021, 11 (7): 3286- 3305.
doi: 10.21037/qims-20-1356 |
23 |
Wang T , Lei Y , Tian Z , et al. Deep learning-based image quality improvement for low-dose computed tomography simulation in radiation therapy[J]. J Med Imaging, 2019, 6 (4): 043504.
doi: 10.1117/1.JMI.6.4.043504 |
24 |
Baguer DO , Leuschner J , Schmidt M . Computed tomography reconstruction using deep image prior and learned reconstruction methods[J]. Inverse Probl, 2020, 36 (9): 094004.
doi: 10.1088/1361-6420/aba415 |
25 |
Zavala-Mondragon LA , Rongen P , Bescos JO , et al. Noise reduction in CT using learned wavelet-frame shrinkage networks[J]. IEEE Trans Med Imaging, 2022, 41 (8): 2048- 2066.
doi: 10.1109/TMI.2022.3154011 |
26 |
Leuschner J , Schmidt M , Ganguly P S , et al. Quantitative comparison of deep learning-based image reconstruction methods for low-dose and sparse-angle CT applications[J]. J Imaging, 2021, 7 (3): 44.
doi: 10.3390/jimaging7030044 |
27 |
Hata A , Yanagawa M , Yoshida Y , et al. Combination of deep learning-based denoising and iterative reconstruction for ultra-low-dose ct of the chest: image quality and lung-RADS evaluation[J]. AJR Am J Roentgenol, 2020, 215 (6): 1321- 1328.
doi: 10.2214/AJR.19.22680 |
28 |
Yeoh H , Hong SH , Ahn C , et al. Deep learning algorithm for simultaneous noise reduction and edge sharpening in low-dose CT images: a pilot study using lumbar spine CT[J]. Korean J Radiol, 2021, 22 (11): 1850- 1857.
doi: 10.3348/kjr.2021.0140 |
29 | 王金华, 宋兰, 隋昕, 等. 深度学习重建改善胸部低剂量CT图像质量的价值[J]. 中华放射学杂志, 2022, 56 (1): 74- 80. |
WANG Jinhua , SONG Lan , SUI Xin , et al. Application value of deep learning reconstruction to improve image quality of low-dose chest CT[J]. Chinese Journal of Radiology, 2022, 56 (1): 74- 80. | |
30 |
Chilamkurthy S , Ghosh R , Tanamala S , et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study[J]. Lancet, 2018, 392 (10162): 2388- 2396.
doi: 10.1016/S0140-6736(18)31645-3 |
31 |
Mu D , Bai JJ , Chen WP , et al. Calcium scoring at coronary CT angiography using deep learning[J]. Radiology, 2022, 302 (2): 309- 316.
doi: 10.1148/radiol.2021211483 |
32 |
Yasaka K , Akai H , Abe O , et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study[J]. Radiology, 2018, 286 (3): 887- 896.
doi: 10.1148/radiol.2017170706 |
33 |
Jin L , Yang JC , Kuang KM , et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet[J]. EBioMedicine, 2020, 62, 103106.
doi: 10.1016/j.ebiom.2020.103106 |
34 |
Zhou QQ , Wang JS , Tang W , et al. Automatic detection and classification of rib fractures on thoracic ct using convolutional neural network: accuracy and feasibility[J]. Korean J Radiol, 2020, 21 (7): 869- 879.
doi: 10.3348/kjr.2019.0651 |
35 |
Weikert T , Noordtzij LA , Bremerich J , et al. Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography[J]. Korean J Radiol, 2020, 21 (7): 891- 899.
doi: 10.3348/kjr.2019.0653 |
36 |
Mawlawi O , Townsend DW . Multimodality imaging: an update on PET/CT technology[J]. Eur J Nucl Med Mol, 2009, 36 (S1): 15- 29.
doi: 10.1007/s00259-008-1016-6 |
37 |
Wallis D , Soussan M , Lacroix M , et al. Correction to: An[18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients[J]. Eur J Nucl Med Mol, 2022, 49 (10): 3598.
doi: 10.1007/s00259-022-05855-0 |
38 |
Capobianco N , Meignan M , Cottereau AS , et al. Deep-learning 18F-FDG uptake classification enables total metabolic tumor volume estimation in diffuse large B-Cell lymphoma[J]. J Nucl Med, 2021, 62 (1): 30- 36.
doi: 10.2967/jnumed.120.242412 |
39 |
Mu W , Jiang L , Zhang JY , et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics[J]. Nature Communications, 2020, 11 (1): 5228.
doi: 10.1038/s41467-020-19116-x |
40 | 王梅云. 磁共振成像人工智能的研究现状及发展前景[J]. 磁共振成像, 2023, 14 (3): 1- 5. |
WANG Meiyun . Research status and development prospect of magnetic resonance imaging artificial intelligence[J]. Chinese Journal of Magnetic Resonance Imaging, 2023, 14 (3): 1- 5. | |
41 |
Wang SS , Su ZH , Ying L , et al. Accelerating magnetic resonance imaging via deep learning[J]. Proc IEEE Int Symp Biomed Imaging, 2016, 514- 517.
doi: 10.1109/ISBI.2016.7493320 |
42 |
Zhang F , Wells WM , O'Donnell LJ . Deep diffusion mri registration (DDMReg): a deep learning method for diffusion mri registration[J]. IEEE Trans Med Imaging, 2022, 41 (6): 1454- 1467.
doi: 10.1109/TMI.2021.3139507 |
43 |
Hegi ME , Diserens AC , Gorlia T , et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352 (10): 997- 1003.
doi: 10.1056/NEJMoa043331 |
44 | 薛彩强, 杜晓灏, 金龙, 等. 基于MRI深度学习模型预测WHOⅡ、Ⅲ级胶质瘤MGMT启动子甲基化状态[J]. 中华放射学杂志, 2021, 55 (7): 734- 738. |
Xue CQ , Du XH , Jin L , et al. Prediction of methylation status of MGMT promoter in WHO grade Ⅱ, Ⅲ glioma based on MRI deep learning model[J]. Chinese Journal of Radiology, 2021, 55 (7): 734- 738. | |
45 |
Moradiya Y , Janjua N . Presentation and outcomes of "wake-up strokes" in a large randomized stroke trial: analysis of data from the international stroke trial[J]. J Stroke Cerebrovasc Dis, 2013, 22 (8): e286- e292.
doi: 10.1016/j.jstrokecerebrovasdis.2012.07.016 |
46 | 姜亮, 周蕾蕾, 艾中萍, 等. 基于DWI和FLAIR的深度学习预测急性脑卒中发病时间[J]. 中华放射学杂志, 2021, 55 (8): 811- 816. |
JIANG L , ZHOU LL , AI ZP , et al. Prediction of the onset time of acute stroke by deep learning based on DWI and FLAIR[J]. Chinese Journal of Radiology, 2021, 55 (8): 811- 816. | |
47 |
Katabathula S , Wang Q , Xu R . Predict Alzheimer's disease using hippocampus MRI data: a lightweight 3D deep convolutional network model with visual and global shape representations[J]. Alzheimers Res Ther, 2021, 13 (1): 104.
doi: 10.1186/s13195-021-00837-0 |
48 | 马璇, 赵世华. 机器学习在心脏磁共振成像中的应用进展[J]. 中华心血管病杂志, 2023, 51 (4): 434- 439. |
MA Xuan , ZHAO Shihua . Progress in the clinical application of machine learning in cardiac magnetic resonance imaging[J]. Chinese Journal of Cardiology, 2023, 51 (4): 434- 439. | |
49 |
Qin C , Schlemper J , Caballero J , et al. Convolutional recurrent neural networks for dynamic mr image reconstruction[J]. IEEE Trans Med Imaging, 2019, 38 (1): 280- 290.
doi: 10.1109/TMI.2018.2863670 |
50 |
Fahmy AS , Rowin EJ , Chan RH , et al. Improved quantification of myocardium scar in late gadolinium enhancement images: deep learning based image fusion approach[J]. J Magn Reson Imaging, 2021, 54 (1): 303- 312.
doi: 10.1002/jmri.27555 |
51 |
Zhang Q , Burrage MK , Lukaschuk E , et al. Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy[J]. Circulation, 2021, 144 (8): 589- 599.
doi: 10.1161/CIRCULATIONAHA.121.054432 |
52 |
Zucker EJ , Sandino CM , Kino A , et al. Free-breathing accelerated cardiac MRI using deep learning: validation in children and young adults[J]. Radiology, 2021, 300 (3): 539- 548.
doi: 10.1148/radiol.2021202624 |
53 |
Masutani EM , Bahrami N , Hsiao A . Deep learning single-frame and multiframe super-resolution for cardiac MRI[J]. Radiology, 2020, 295 (3): 552- 561.
doi: 10.1148/radiol.2020192173 |
54 |
Sung H , Ferlay J , Siegel RL , et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71 (3): 209- 249.
doi: 10.3322/caac.21660 |
55 |
Raman AG , Jones C , Weiss CR . Machine learning for hepatocellular carcinoma segmentation at mri: radiology in training[J]. Radiology, 2022, 304 (3): 509- 515.
doi: 10.1148/radiol.212386 |
56 |
Zhao JF , Li DW , Xiao XJ , et al. United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI[J]. Med Image Anal, 2021, 73, 102154.
doi: 10.1016/j.media.2021.102154 |
57 |
Hamm CA , Wang CJ , Savic LJ , et al. Deep learning for liver tumor diagnosis part Ⅰ: development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29 (7): 3338- 3347.
doi: 10.1007/s00330-019-06205-9 |
58 |
Almansour H , Herrmann J , Gassenmaier S , et al. Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability[J]. Radiology, 2023, 306 (3): e212922.
doi: 10.1148/radiol.212922 |
59 |
Sun S , Tan ET , Mintz DN , et al. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI[J]. Eur Radiol, 2022, 32 (9): 6167- 6177.
doi: 10.1007/s00330-022-08708-4 |
60 |
Schelb P , Kohl S , Radtke JP , et al. Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment[J]. Radiology, 2019, 293 (3): 607- 617.
doi: 10.1148/radiol.2019190938 |
61 |
Zhu Y , Wei R , Gao G , et al. Fully automatic segmentation on prostate MR images based on cascaded fully convolution network[J]. J Magn Reson Imaging, 2019, 49 (4): 1149- 1156.
doi: 10.1002/jmri.26337 |
62 |
Diaz M , Peabody JO , Kapoor V , et al. Oncologic outcomes at 10 years following robotic radical prostatectomy[J]. Eur Urol, 2015, 67 (6): 1168- 1176.
doi: 10.1016/j.eururo.2014.06.025 |
63 |
Yan Y , Shao L , Liu Z , et al. Deep learning with quantitative features of magnetic resonance images to predict biochemical recurrence of radical prostatectomy: a multi-center study[J]. Cancers, 2021, 13 (12): 3098.
doi: 10.3390/cancers13123098 |
64 | 窦猛, 陈哲彬, 王辛, 等. 基于深度学习的多模态医学图像分割综述[J/OL]. 计算机应用, 2023: 1-14. (2023-05-16). https://kns.cnki.net/kcms/detail/51.1307.tp.20230515.1739.002.html |
65 |
Du SJ , Yuan C , Zhou QM , et al. Deep learning-based PET/MR radiomics for the classification of annualized relapse rate in multiple sclerosis[J]. Mult Scler Relat Disord, 2023, 75, 104750.
doi: 10.1016/j.msard.2023.104750 |
66 |
Choi JH , Kim HA , Kim W , et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning[J]. Sci Rep, 2020, 10 (1): 21149.
doi: 10.1038/s41598-020-77875-5 |
[1] | 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89. |
[2] | 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6. |
[3] | 赵古月,尚靳,侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报 (医学版), 2023, 61(12): 30-35. |
[4] | 徐子良,郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报 (医学版), 2023, 61(12): 7-12, 20. |
[5] | 王琳琳,孙玉萍. 从临床医生角度,看人工智能在癌症精准诊疗中的应用及思考[J]. 山东大学学报 (医学版), 2021, 59(9): 89-96. |
[6] | 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42-49, 73. |
[7] | 林浩添,李龙辉,陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 11-16. |
[8] | 曲毅,张焕开,宋先,初宝睿. 人工智能诊断系统在视网膜疾病的研究进展[J]. 山东大学学报 (医学版), 2020, 58(11): 39-44. |
[9] | CheungCarol Y.,冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报 (医学版), 2020, 58(11): 24-32, 38. |
|