您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (12): 30-35.doi: 10.6040/j.issn.1671-7554.0.2023.0795

• 医学影像人工智能的创新与挑战—专家综述 • 上一篇    下一篇

人工智能在冠状动脉CT血管成像的应用进展

赵古月,尚靳,侯阳*()   

  1. 中国医科大学附属盛京医院放射科,辽宁 沈阳 110004
  • 收稿日期:2023-09-06 出版日期:2023-12-10 发布日期:2024-01-11
  • 通讯作者: 侯阳 E-mail:houyang1973@163.com
  • 作者简介:侯阳,医学博士,教授、主任医师,博士研究生导师。现任中国医科大学附属盛京医院放射教研室主任、放射科主任。学术兼职:中华医学会放射学分会全国委员,中华医学会放射学分会出版与宣传工作组组长,中国老年医学学会医学影像分会副会长,辽宁省医学会放射学分会主任委员,辽宁省医学影像质量控制中心主任。奖项荣誉:辽宁省青年名医、辽宁省优秀科技工作者。全国高等学校教师教学创新大赛正高组二等奖、辽宁省特等奖获得者,辽宁省普通高等学校本科教学名师。获部省级科技进步二等奖2项、三等奖2项。科研成果:主持科技部重点研发课题1项,国家自然科学基金3项,省部级基金10项。副主编及参编专著、教材7部,参与5部心血管影像中国专家指南(共识)的编撰,发表论文140余篇
  • 基金资助:
    国家自然科学基金青年科学基金(82302186)

Advances in the application of artificial intelligence in coronary computed tomography angiography

Guyue ZHAO,Jin SHANG,Yang HOU*()   

  1. Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
  • Received:2023-09-06 Online:2023-12-10 Published:2024-01-11
  • Contact: Yang HOU E-mail:houyang1973@163.com

摘要:

随着人工智能技术在医学影像领域的应用越来越广泛,其在冠状动脉CT血管成像中的应用已经显示出了巨大的潜力,对于改善图像质量、优化后处理流程、辅助病变检出、评估功能学状态、分析预后等方面具有重要的临床意义。同时,人工智能在本领域应用中也存在一些问题有待解决,需要进一步的全检查流程优化,进而增强其在应用中的实用性和高效能的展现。本文对人工智能在冠状动脉CT血管成像中的研究进展、存在问题和未来发展展望作以综述。

关键词: 人工智能, 深度学习, 冠状动脉疾病, CT, 冠状动脉CT血管成像

Abstract:

With the increasingly widespread application of artificial intelligence in the field of medical imaging, its application in coronary artery CT angiography has shown great potential, which helps to improve image quality, optimize post-processing processes, assist disease detection, evaluate functional status, analyse prognosis, and other aspects. Meanwhile, there arise some problems, and the full inspection process should be further optimized to enhance its practicality and efficiency. This article reviews the research progress, existing problems, and future development of artificial intelligence in coronary artery CT angiography.

Key words: Artificial intelligence, Deep learning, Coronary artery disease, Computed tomography, Coronary CT angiography

中图分类号: 

  • R811
1 Lu HX , Yao YD , Wang L , et al. Research progress of machine learning and deep learning in intelligent diagnosis of the coronary atherosclerotic heart disease[J]. Comput Math Methods Med, 2022, 2022, 3016532.
doi: 10.1155/2022/3016532
2 Alskaf E , Dutta U , Scannell CM , et al. Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis[J]. J Med Artif Intell, 2022, 5, 11.
doi: 10.21037/jmai-22-36
3 于燕乔, 史大卓, 曲华, 等. 人工智能诊断冠心病效能的Meta分析[J]. 中国循证心血管医学杂志, 2023, 15 (2): 129- 134.
YU Yanqiao , SHI Dazhuo , QU Hua , et al. Diagnostic efficacy of artificial intelligence for coronary artery disease: a Meta-analysis[J]. Chinese Journal of Evidence-Bases Cardiovascular Medicine, 2023, 15 (2): 129- 134.
4 范婧, 杨文洁, 王梦真, 等. 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022, 21 (3): 374- 379.
doi: 10.16150/j.1671-2870.2022.03.014
FAN Jing , YANG Wenjie , WANG Mengzhen , et al. The application of deep learning algorithm reconstruction in low tube voltage coronary CT angiography[J]. Journal of Diagnostics Concepts & Practice, 2022, 21 (3): 374- 379.
doi: 10.16150/j.1671-2870.2022.03.014
5 Catapano F , Lisi C , Savini G , et al. Deep learning image reconstruction algorithm for CCTA: image quality assessment and clinical application[J]. J Comput Assist Tomogr, 2023, 24.
doi: 10.1097/RCT.0000000000001537
6 Benz DC , Ersözlü S , Mojon FLA , et al. Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography[J]. Eur Radiol, 2022, 32 (4): 2620- 2628.
doi: 10.1007/s00330-021-08367-x
7 王可欣, 邱建星. 医学影像非诊断类人工智能(AI)的研究进展[J]. 放射学实践, 2023, 38 (2): 222- 225.
WANG Kexin , QIU Jianxing . Research progress of non-diagnostic artificial intelligence (AI) in medical images[J]. Radiologic Practice, 2023, 38 (2): 222- 225.
8 王宏伟, 李瑛, 高一峰, 等. 深度学习图像重建算法用于肥胖个体低剂量冠状动脉CT血管成像[J]. 中国医学影像技术, 2021, 37 (5): 754- 758.
WANG Hongwei , LI Ying , GAO Yifeng , et al. Deep learning image reconstruction algorithm in low-dose coronary CT angiography of obese persons[J]. Chinese Journal of Medical Imaging Technology, 2021, 37 (5): 754- 758.
9 Dong CX , Xu SH , Li ZF . A novel end-to-end deep learning solution for coronary artery segmentation from CCTA[J]. Med Phys, 2022, 49 (11): 6945- 6959.
doi: 10.1002/mp.15842
10 Inage H , Tomizawa N , Otsuka Y , et al. Use of a deep-learning-based lumen extraction method to detect significant stenosis on coronary computed tomography angiography in patients with severe coronary calcification[J]. Egypt Heart J, 2022, 74 (1): 43.
doi: 10.1186/s43044-022-00280-y
11 王宪凯, 贾学燕, 程祥科, 等. 人工智能在冠状动脉CTA图像后处理及狭窄评估中的应用价值[J]. 医学影像学杂志, 2022, 32 (4): 588- 590.
WANG Xiankai , JIA Xueyan , CHENG Xiangke , et al. Application value of artificial intelligence in coronary artery CTA image post-processing and stenosis evaluation[J]. Journal of Medical Imaging, 2022, 32 (4): 588- 590.
12 张晓浩, 刘军波, 范丽娟. 人工智能技术应用于冠状动脉CTA图像后处理的可行性[J]. 放射学实践, 2021, 36 (8): 994- 999.
ZHANG Xiaohao , LIU Junbo , FAN Lijuan . Feasibility of applying artificial intelligence technology to post-processing process of coronary CT angiography images[J]. Radiologic Practice, 2021, 36 (8): 994- 999.
13 Mu D, Bai J, Chen W, 等. 采用深度学习的冠状动脉CT血管成像钙化评分[J]. 国际医学放射学杂志, 2022, 45(2): 234. D.
MU, et al. Calcium scoring at coronary CT angiography using deep learning[J]. International Journal of Medical Radiology, 2022, 45(2): 234.
14 樊荣荣, 刘凯, 夏晨, 等. AI对非门控胸部LDCT平扫冠状动脉钙化积分危险分层的预测价值[J]. 国际医学放射学杂志, 2022, 45 (1): 21- 26.
FAN Rongrong , LIU Kai , XIA Chen , et al. Prediction of coronary calcification score risk stratification on non-gated chest low-dose CT with artificial intelligence[J]. International Journal of Medical Radiology, 2022, 45 (1): 21- 26.
15 马玲. 人工智能测定冠周脂肪参数与2型糖尿病的相关性研究[D]. 昆明: 昆明医科大学, 2021.
16 沈旨艳, 夏坤, 幸志洋, 等. 冠周脂肪衰减指数评估冠心病研究进展[J]. 中国医学影像技术, 2023, 39 (4): 614- 617.
SHEN Zhiyan , XIA Kun , XING Zhiyang , et al. Progresses of pericoronary fat attenuation index for evaluating coronary heart disease[J]. Chinese Journal of Medical Imaging Technology, 2023, 39 (4): 614- 617.
17 张润知, 顾慧, 李亚妮, 等. 449例患者冠状动脉周围脂肪衰减指数与CT高危斑块及狭窄程度的关联[J]. 山东大学学报(医学版), 2023, 61 (1): 27- 31.
doi: 10.6040/j.issn.1671-7554.0.2022.0708
ZHANG Runzhi , GU Hui , LI Yani , et al. Association among pericoronary fat attenuation index, CT high-risk plaque and degree of coronary artery stenosis in 449 patients[J]. Journal of Shandong University (Health Science), 2023, 61 (1): 27- 31.
doi: 10.6040/j.issn.1671-7554.0.2022.0708
18 邱海龙, 郭惠明, 姚泽阳, 等. 人工智能在心血管医学中的应用[J]. 中国胸心血管外科临床杂志, 2021, 28 (10): 1160- 1166.
QIU Hailong , GUO Huiming , YAO Zeyang , et al. Application of artificial intelligence in cardiovascular medicine[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2021, 28 (10): 1160- 1166.
19 霍畅, 李奕明. 利用人工智能处理心血管疾病多源数据的方法与展望[J]. 华西医学, 2023, 38 (5): 758- 764.
HUO Chang , LI Yiming . Methods and prospects of using artificial intelligence to process multi-source data of cardiovascular disease[J]. West China Medical Journal, 2023, 38 (5): 758- 764.
20 Zreik M , van Hamersvelt RW , Wolterink JM , et al. A recurrent CNN for automatic detection and classification of coronary artery plaque and Stenosis in coronary CT angiography[J]. IEEE Trans Med Imag, 2019, 38 (7): 1588- 1598.
doi: 10.1109/TMI.2018.2883807
21 Lin A , Manral N , McElhinney P , et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study[J]. Lancet Digit Health, 2022, 4 (4): 256- 265.
doi: 10.1016/S2589-7500(22)00022-X
22 祁冬, 姚传顺, 胡淑敏, 等. 人工智能在冠状动脉CT血管成像图像后处理和冠状动脉狭窄诊断中的应用[J]. 江苏大学学报(医学版), 2023, 33 (4): 323- 327.
QI Dong , YAO Chuanshun , HU Shumin , et al. The value of artificial intelligence in post-processing coronary CTA images and diagnosing coronary artery stenosis[J]. Journal of Jiangsu University(Medicine Edition), 2023, 33 (4): 323- 327.
23 李浚利, 韩丹, 段慧, 等. AI在CCTA诊断冠状动脉狭窄中的准确性及应用价值[J]. 中国医学计算机成像杂志, 2020, 26 (2): 120- 124.
LI Junli , HAN Dan , DUAN Hui , et al. Accuracy and application value of artificial intelligence in the diagnosis of coronary artery Stenosis in CCTA[J]. Chinese Computed Medical Imaging, 2020, 26 (2): 120- 124.
24 LiM., LingR., YuL., 等. 慢性冠状动脉全闭塞CT的深度学习分割与重建[J]. 国际医学放射学杂志, 2023, 46 (3): 351- 352.
LiM. , LingR. , YuL. , et al. Deep learning segmentation and reconstruction for CT of chronic total coronary occlusion[J]. International Journal of Medical Radiology, 2023, 46 (3): 351- 352.
25 Wang ZQ , Zhou YJ , Zhao YX , et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J]. J Geriatr Cardiol, 2019, 16 (1): 42- 48.
26 Kumamaru KK , Fujimoto S , Otsuka Y , et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography[J]. Eur Heart J Cardiovasc Imag, 2020, 21 (4): 437- 445.
27 孙一, 刘博, 孙秀彬, 等. CCTA-AI联合FFR-CT诊断冠状动脉狭窄病变的价值[J]. 医学影像学杂志, 2022, 32 (12): 2081- 2085.
SUN Yi , LIU Bo , SUN Xiubin , et al. Value of artificial intelligence based coronary computed tomography angiography combined with the fractional flow re-serve based on coronary CT on the diagnosis of coronary stenosis[J]. Journal of Medical Imaging, 2022, 32 (12): 2081- 2085.
28 张华, 王培源, 常娜, 等. 不同心动周期冠状动脉CT-FFR差异及其影响因素[J]. 山东大学学报(医学版), 2023, 61 (7): 55- 62.
ZHANG Hua , WANG Peiyuan , CHANG Na , et al. Differences in CT-FFR of coronary arteries with different cardiac cycles and influencing factors[J]. Journal of Shandong University (Health Science), 2023, 61 (7): 55- 62.
29 Tang CX , Liu CY , Lu MJ , et al. CT FFR for ischemia-specific CAD WithaNew computational fluid dynamics algorithm: a Chinese multicenter study[J]. JACC Cardiovasc Imaging, 2020, 13 (4): 980- 990.
doi: 10.1016/j.jcmg.2019.06.018
30 Xu C , Xu M , Yan J , et al. The impact of deep learning reconstruction on image quality and coronary CT angiography-derived fractional flow reserve values[J]. Eur Radiol, 2022, 32 (11): 7918- 7926.
doi: 10.1007/s00330-022-08796-2
31 Nurmohamed NS , Bom MJ , Jukema RA , et al. AI-guided quantitative plaque staging predicts long-term cardiovascular outcomes in patients at risk for atherosclerotic CVD[J]. JACC Cardiovasc Imaging, 2023, S1936-S878X(23)00277-2.
doi: 10.1016/j.jcmg.2023.05.020
32 宋瑶, 霍怀璧, 李晗, 等. 冠状动脉CTA多参数AI特征对急性冠脉综合征的诊断价值[J]. 放射学实践, 2023, 38 (7): 873- 878.
doi: 10.13609/j.cnki.1000-0313.2023.07.011
SONG Yao , HUO Huaibi , LI Han , et al. Diagnostic value of multi-parameter AI features in coronary computed tomography angiography for acute coronary syndrome[J]. Radiologic Practice, 2023, 38 (7): 873- 878.
doi: 10.13609/j.cnki.1000-0313.2023.07.011
33 王娜娜, 李大胜, 张媛, 等. 人工智能在冠状动脉CTA诊断冠状动脉疾病中的应用价值[J]. 中国中西医结合影像学杂志, 2022, 20 (3): 225- 229.
WANG Nana , LI Dasheng , ZHANG Yuan , et al. Application value of artificial intelligence in the diagnosis of coronary artery disease by coronary CTA[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2022, 20 (3): 225- 229.
34 Adams LC , Truhn D , Busch F , et al. Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: a multilingual feasibility study[J]. Radiology, 2023, 307 (4): e230725.
doi: 10.1148/radiol.230725
35 沈欢, 孙雅, 江文青. 基于整合型多智能场景的心血管疾病管理服务平台实践探索[J]. 中国数字医学, 2023, 18 (5): 117- 120.
SHEN Huan , SUN Ya , JIANG Wenqing . Practice and exploration of cardiovascular disease management service platform based on integrated multi-intelligence scenarios[J]. China Digital Medicine, 2023, 18 (5): 117- 120.
[1] 吕文馨,刘乙澍. 低角患者颞下颌关节窝及下颌骨形态位置特点的锥形束CT研究[J]. 山东大学学报 (医学版), 2023, 61(7): 101-108.
[2] 张华,王培源,常娜,许天旗,袁宪顺,王锡明. 不同心动周期冠状动脉CT- FFR差异及其影响因素[J]. 山东大学学报 (医学版), 2023, 61(7): 55-62.
[3] 吴南,仉建国,朱源棚,陈癸霖,陈泽夫. 人工智能在脊柱畸形诊疗中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 14-20.
[4] 冯世庆. 计算机视觉与腰椎退行性疾病[J]. 山东大学学报 (医学版), 2023, 61(3): 1-6.
[5] 黄霖,车圳,李明,李玉希,宁庆. 人工智能在骨科疾病诊治中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 37-45.
[6] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[7] 王辉,王连雷,吴天驰,田永昊,原所茂,王霞,吕维加,刘新宇. 人工智能辅助设计3D打印手术导板在脊柱侧凸矫形术中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 127-133.
[8] 董洪珍,陈佳民, 孙龙华. CT引导下经皮穿刺活检术诊断气道入路不适用的纵隔肿物1例并文献复习[J]. 山东大学学报 (医学版), 2023, 61(2): 125-129.
[9] 马臣帮,高沛,常耀,毛昌琳,陈峰,朱可嘉,管勇,李善军,丁森泰. 非结节性硬化症双肾巨大血管平滑肌脂肪瘤精准诊断及同期两侧手术治疗1例及文献复习[J]. 山东大学学报 (医学版), 2023, 61(2): 65-71.
[10] 聂佩,王锡明. 人工智能在心肌影像应用中的研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 1-6.
[11] 徐子良,郑敏文. 影像人工智能在医学领域的时代创新与挑战[J]. 山东大学学报 (医学版), 2023, 61(12): 7-12, 20.
[12] 李骁,孙志远,张龙江. 影像人工智能在肺炎筛查、诊断及预测领域的应用研究进展[J]. 山东大学学报 (医学版), 2023, 61(12): 13-20.
[13] 林冰洁,王梅云. 深度学习在医学影像学中的研究现状及发展前景[J]. 山东大学学报 (医学版), 2023, 61(12): 21-29.
[14] 许天旗,常娜,张帅,李莎,矫秉轩,于鑫鑫,王锡明. 非酒精性脂肪肝识别基于CTA颈动脉高危斑块[J]. 山东大学学报 (医学版), 2023, 61(12): 36-43.
[15] 焦光丽,石子馨,陈蓉,宋亚博,杨飞,崔书君. 基于增强CT影像组学预测卵巢癌患者铂类药物敏感性[J]. 山东大学学报 (医学版), 2023, 61(12): 62-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .