山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 115-120.doi: 10.6040/j.issn.1671-7554.0.2022.1398
• 临床医学 • 上一篇
郭永园,孙厚义,张元凯,颜廷宾,刘培来,贾玉华
GUO Yongyuan, SUN Houyi, ZHANG Yuankai, YAN Tingbin, LIU Peilai, JIA Yuhua
摘要: 目的 回顾性分析鸿鹄骨科机器人辅助人工膝关节置换(TKA)的手术时间和影像学数据,探讨机器人辅助TKA的临床效果和学习曲线。 方法 对同一手术组开展的25例机器人辅助TKA手术进行分析,将手术时间通过累积和分析法(CUSUM)进行分析,绘制机器人辅助TKA的学习曲线,根据学习曲线分为两个不同阶段,比较两个阶段的手术时间、出血量、住院天数、髋-膝-踝角等影像学数据和临床评分。 结果 CUSUM分析结果显示,机器人辅助TKA的学习曲线最大转折点在第13例手术,基于此将学习曲线划分为学习提高阶段和熟练掌握阶段,两个阶段患者的一般资料、术后髋-膝-踝角等影像学数据、美国特种医院(HSS)评分、膝关节活动范围(ROM)和关节置换术后忘记评分(FSJ-12)差异无统计学意义(P>0.05),但熟练掌握阶段与学习提高阶段相比,整体手术时间减少23 min,空间摆位时间下降4.4 min,光学靶标安装下降5.0 min;在手术操作平均耗时上,定位下肢力线和关节面配准的时间分别降低2.9 min和5.2 min,机械臂截骨操作时间降低14.1 min。 结论 利用CUSUM方法准确分析了机器人辅助TKA的学习曲线,显示熟练掌握操作此技术须累积的手术例数为13例。机器人辅助TKA学习曲线短,临床效果满意。
中图分类号:
[1] Canovas F, Dagneaux L. Quality of life after total knee arthroplasty[J]. Orthop Traumatol Surg Res, 2018, 104(1s): S41-S46. [2] Kayani B, Konan S, Ayuob A, et al. Robotic technology in total knee arthroplasty: a systematic review[J]. EFORT Open Rev, 2019, 4(10): 611-617. [3] Khlopas A, Sodhi N, Sultan AA,et al. Robotic Arm-Assisted Total Knee Arthroplasty[J]. J Arthroplasty, 2018,33(7): 2002-2006. [4] Zhang J, Ndou WS, Ng N, et al. Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(8): 2677-2695. [5] Sarpong NO, Herndon CL, Held MB, et al. What is the learning curve for new technologies in total joint arthroplasty? A review[J]. Curr Rev Musculoskelet Med, 2020, 13(6): 675-679. [6] 赵宁, 张翊乔, 王鈢, 等. 全乳晕入路腔镜甲状腺切除术十步法学习曲线[J]. 中华腔镜外科杂志(电子版), 2020, 13(4): 201-206. ZHAO Ning, ZHANG Yiqiao, WANG Xi, et al. Study on the learning curve of the ten-step method of endoscopic thyroidectomy by complete areola approach[J]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2020, 13(4): 201-206. [7] Clement ND, Al-Zibari M, Afzal I, et al. A systematic review of imageless hand-held robotic-assisted knee arthroplasty: learning curve, accuracy, functional outcome and survivorship[J]. EFORT Open Rev, 2020, 5(5): 319-326. [8] 邵小龙, 杜天舒, 闫昭, 等. 机器人辅助全膝关节置换的研究进展[J]. 中国骨与关节杂志, 2022, 11(7): 521-525. SHAO Xiaolong, DU Tianshu, YAN Zhao, et al. Research progress of robot-assisted total knee arthroplasty[J]. Chinese Journal of Bone and Joint, 2022, 11(7): 521-525. [9] Kayani B, Konan S, Huq SS, et al. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1132-1141. [10] 何锐, 孙茂淋, 熊然, 等. 机器人辅助膝关节置换的近期疗效与学习曲线[J]. 陆军军医大学学报, 2022,44(5): 476-483. He R, Sun ML, Xiong R, et al. Short-term efficacy and learning curve of robot-assisted total knee arthroplasty[J]. Journal of Third Military Medical University, 2022, 44(5): 476-483. [11] 周宗科, 翁习生, 曲铁兵, 等. 中国髋、膝关节置换术加速康复: 围术期管理策略专家共识[J]. 中华骨与关节外科杂志, 2016, 9(1): 1-9. ZHOU Zongke, WENG Xisheng, QU Tiebing, et al. Expert consensus in enhanced recovery after total hip and knee arthroplasty in China: perioperative management[J]. Chinese Journal of Bone and Joint Surgery, 2016, 9(1): 1-9. [12] Batailler C, Fernandez A, Swan J, et al. MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(11): 3585-3598. [13] Oussedik S, Abdel MP, Victor J, et al. Alignment in total knee arthroplasty[J]. Bone Joint J, 2020, 102-B(3): 276-279. doi:10.1302/0301-620x.102b3.bjj-2019-1729. [14] Kayani B, Konan S, Tahmassebi J, et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study[J]. Bone Joint J, 2018, 100-B(7): 930-937. [15] Deckey DG, Rosenow CS, Verhey JT, et al. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques[J]. Bone Joint J, 2021, 103-B(6 Supple A): 74-80. [16] Smith AF, Eccles CJ, Bhimani SJ, et al. Improved patient satisfaction following robotic-assisted total knee arthroplasty[J]. J Knee Surg, 2021, 34(7): 730-738. [17] Winnock De Grave P, Kellens J, Tampere T, et al. Clinical outcomes in TKA are enhanced by both robotic assistance and patient specific alignment: a comparative trial in 120 patients[J]. Arch Orthop Trauma Surg, 2022. doi: 10.1007/s00402-022-04636-6. [18] 刘扬德, 赵宇驰, 王维光, 等. 全膝关节置换中股骨外旋截骨对下肢动态力线的影响[J]. 中华骨科杂志, 2015, 35(10): 1048-1054. LIU Yangde, ZHAO Yuchi, WANG Weiguang, et al. Femoral rotation influences dynamic alignment of the lower extremity in total knee arthroplasty[J]. Chinese Journal of Orthopaedics, 2015, 35(10): 1048-1054. [19] 钱子煜, 张越文, 马小越, 等. CUSUM预警模型在医院感染性腹泻暴发预警中的应用[J]. 中华医院感染学杂志, 2018, 28(19): 3011-3015. QIAN Ziyu, ZHANG Yuewen, MA Xiaoyue, et al. Applying CUSUM-based methods for detection of outbreaks of acute infectious gastroenteritis in health-care facilities[J]. Chinese Journal of Nosocomiology, 2018, 28(19): 3011-3015. [20] Novoa NM, Varela G. Monitoring surgical quality: the cumulative sum(CUSUM)approach[J]. Mediastinum, 2020, 4: 4. doi:10.21037/med.2019.10.01. [21] Nizard RS, Porcher R, Ravaud P, et al. Use of the Cusum technique for evaluation of a CT-based navigation system for total knee replacement[J]. Clin Orthop Relat Res, 2004(425): 180-188. doi:10.1097/01.blo.0000136902.01368.69. [22] Kayani B, Konan S, Huq SS, et al. The learning curve of robotic-arm assisted acetabular cup positioning during total hip arthroplasty[J]. Hip Int, 2021, 31(3): 311-319. [23] Kayani B, Konan S, Pietrzak JRT, et al. The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study[J]. Bone Joint J, 2018, 100-B(8): 1033-1042. [24] Kaper B. Learning curve and time commitment assessment in the adoption of NAVIO robotic-assisted total knee arthroplasty[J]. Orthopaedic Proceedings, 2020, 102(Suppl 1): 59-59. doi.org/10.1302/1358-992X.2020.1.059. [25] 夏润之, 童志成, 张经纬, 等. 国产 “鸿鹄” 膝关节置换手术机器人的早期临床研究[J]. 实用骨科杂志, 2021, 27(2): 108-113. XIA Runzhi, TONG Zhicheng, ZHANG Jingwei, et al. Early clinical study of domestic “skywalker” surgical robot for knee arthroplasty[J]. Journal of Practical Orthopaedics, 2021, 27(2): 108-113. [26] Kim YH, Yoon SH, Park JW. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial[J]. Clin Orthop Relat Res, 2020, 478(2): 266-275. |
[1] | 刘新宇,李冬来,赵文龙,王政,李超,王连雷,原所茂,田永昊. 机器人/导航辅助下椎弓根螺钉植入在脊柱畸形矫正中的应用[J]. 山东大学学报 (医学版), 2023, 61(3): 21-28. |
[2] | 李超,孙小刚,李昊,田永昊,原所茂,刘新宇,王连雷. 机器人联合三维“C”型臂辅助置钉在44例脊柱侧弯矫形术中的应用价值[J]. 山东大学学报 (医学版), 2023, 61(3): 107-114. |
[3] | 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89. |
[4] | 杜付鑫,张体冲,李倩倩,宋锐. 脊柱手术机器人研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 46-56. |
[5] | 刘亚军,郎昭,郭安忆,刘文勇. 骨科冲击波治疗的智能化发展现状及趋势分析[J]. 山东大学学报 (医学版), 2023, 61(3): 7-13. |
[6] | 王政,孙小刚,李超,王连雷,李冬来,原所茂,田永昊,刘新宇. 机器人辅助MIS-TLIF与徒手开放TLIF治疗腰椎退行性疾病的比较:2年随访[J]. 山东大学学报 (医学版), 2023, 61(3): 97-106. |
[7] | 乔桦,李慧武. 膝关节置换手术机器人应用现状与研究进展[J]. 山东大学学报 (医学版), 2023, 61(3): 29-36. |
[8] | 匡风霞,赵晓虹,韩宝佳,高成杰. 对控制机器人甲状腺癌根治术患者手术应激反应麻醉深度的探讨[J]. 山东大学学报 (医学版), 2022, 60(5): 81-86. |
[9] | 田辉,易文波,李树海. 达芬奇机器人食管癌切除术之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 28-32. |
[10] | 庄大勇,贺青卿,李小磊,周鹏,岳涛,徐婧. 达芬奇机器人在儿童及青少年甲状腺癌中的应用[J]. 山东大学学报 (医学版), 2021, 59(1): 45-48. |
[11] | 张伟,谭文浩,李贻斌. 基于深度强化学习的四足机器人运动控制发展现状与展望[J]. 山东大学学报 (医学版), 2020, 1(8): 61-66. |
[12] | 王刚,潘华峰,刘江,王海峰,程伟,江志伟. 达芬奇Xi系统在完全机器人根治性远端胃大部切除术中的应用[J]. 山东大学学报 (医学版), 2020, 58(5): 51-55. |
[13] | 乔宇,崔亮亮,李帅,王峰,阮师漫,景一鸣,刘翀. 智能问答机器人系统研发及应用研究——以济南市新型冠状病毒肺炎疫情处置应对为例[J]. 山东大学学报 (医学版), 2020, 58(4): 17-22. |
[14] | 赵健,韩晓玲,王刚,刘江,周嘉晖,王海锋,江志伟,黎介寿. 多模式止痛对机器人45例远端胃切除术后肠功能的影响[J]. 山东大学学报 (医学版), 2019, 57(9): 43-47. |
[15] | 荣风年,赵珊. 限制单孔腹腔镜技术发展的因素分析[J]. 山东大学学报 (医学版), 2019, 57(12): 26-30. |
|