您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 29-36.doi: 10.6040/j.issn.1671-7554.0.2022.1470

• 专家综述 • 上一篇    下一篇

膝关节置换手术机器人应用现状与研究进展

乔桦,李慧武*()   

  1. 上海交通大学医学院附属第九人民医院骨科, 上海 200001
  • 收稿日期:2022-12-29 出版日期:2023-03-10 发布日期:2023-03-24
  • 通讯作者: 李慧武 E-mail:huiwu1223@163.com
  • 作者简介:李慧武,男,医学博士,主任医师,教授,博士研究生导师,上海交通大学医学院附属第九人民医院骨科行政副主任,“十三五”国家重点研发计划首席科学家,上海交通大学医学院附属第九人民医院“十佳”医生,入选上海市优秀技术带头人、上海市科技启明星计划、上海交通大学医学院双百人计划。先后担任中华医学会骨科分会关节学组委员、中华医学会骨科分会青年委员、中国医师协会骨科医师分会髋关节学组及数字骨科学组副组长、中国研究型医院学会关节外科学专业委员会常务委员、上海市生物医学工程学会骨关节工程专委会主任委员、上海医学会骨科分会“浦菁会”关节学组组长等学术职务。先后主持“十三五”国家重点研发计划、国家自然科学基金等国家级及省部级科研项目12项,其中作为首席科学家主持“十三五”国家重点研发计划1项,作为项目负责人主持国家自然科学基金面上项目2项、国家自然科学基金青年项目1项、上海市科委项目1项等。获教育部科学技术进步二等奖、中华医学科技奖三等奖、上海市科技进步一等奖、上药杏林育才奖等荣誉奖励。参编《外科学》(八年制)、《中华骨科学》等专著11部。发表论文107篇,其中SCI论文72篇,以第一作者/通信作者在BJJ、CORR、JOA、KSST等国际权威期刊发表SCI论文33篇,累积SCI影响因子149.98分。授权专利35项,其中以第一发明人授权专利16项

Application status and research progress of knee arthroplasty surgical robot

Hua QIAO,Huiwu LI*()   

  1. Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
  • Received:2022-12-29 Online:2023-03-10 Published:2023-03-24
  • Contact: Huiwu LI E-mail:huiwu1223@163.com

摘要:

手术机器人作为一种新兴技术,能够有效地提高膝关节置换术的精准性、高效性及安全性。然而由于市场上用于膝关节置换术的手术机器人种类繁多,目前仍缺乏对于膝关节置换手术机器人应用现状及研究进展的综合评估。本文从膝关节置换手术机器人的不同应用领域展开,首先介绍了应用于单髁膝关节置换术、髌股关节置换术和全膝关节置换术中的手术机器人,随后分析了目前膝关节置换手术机器人在临床应用方面的优势与不足,最后,针对膝关节置换手术机器人现有不足之处进行分析并提出可能的解决方案,以期为膝关节置换手术机器人的未来发展提供参考。

关键词: 膝关节置换术, 手术机器人, 微创手术, 临床结果

Abstract:

As a new technology, surgical robots can significantly improve the accuracy, efficiency and safety of knee arthroplasty. However, owing to the wide variety of surgical robots in the market, there is still no comprehensive evaluation of the application status and research progress. This article firstly introduces surgical robots used in the unicondylar knee arthroplasty, patellofemoral arthroplasty, and total knee arthroplasty, then analyzes their advantages and disadvantages, and finally discusses the shortcomings and proposes possible solutions, hoping to provide reference for the future development.

Key words: Knee arthroplasty, Surgical robot, Minimally invasive surgery, Clinical outcome

中图分类号: 

  • R687.1
1 Jacofsky DJ , Allen M . Robotics in arthroplasty: a comprehensive review[J]. J Arthroplasty, 2016, 31 (10): 2353- 2363.
doi: 10.1016/j.arth.2016.05.026
2 DiGioia AM 3rd , Jaramaz B , Colgan BD . Computer assisted orthopaedic surgery. Image guided and robotic assistive technologies[J]. Clin Orthop Relat Res, 1998, (354): 8- 16.
3 孙茂淋, 杨柳, 何锐. 手术机器人在人工全膝关节置换术中的应用及研究进展[J]. 中国修复重建外科杂志, 2021, 35 (7): 913- 917.
SUN Maolin , YANG Liu , HE Rui . Application and research progress of robotic-arm in total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (7): 913- 917.
4 Antonios JK , Korber S , Sivasundaram L , et al. Trends in computer navigation and robotic assistance for total knee arthroplasty in the United States: an analysis of patient and hospital factors[J]. Arthroplast Today, 2019, 5 (1): 88- 95.
doi: 10.1016/j.artd.2019.01.002
5 Deckey DG , Rosenow CS , Verhey JT , et al. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques[J]. Bone Joint J, 2021, 103-B (6 Supple A): 74- 80.
doi: 10.1302/0301-620X.103B6.BJJ-2020-2003.R1
6 Xia R , Zhai Z , Zhang J , et al. Verification and clinical translation of a newly designed "Skywalker" robot for total knee arthroplasty: a prospective clinical study[J]. J Orthop Translat, 2021, 29, 143- 151.
doi: 10.1016/j.jot.2021.05.006
7 Jeon SW , Kim KI , Song SJ . Robot-assisted total knee arthroplasty does not improve long-term clinical and radiologic outcomes[J]. J Arthroplasty, 2019, 34 (8): 1656- 1661.
doi: 10.1016/j.arth.2019.04.007
8 Liddle AD , Pandit H , Judge A , et al. Patient-reported outcomes after total and unicompartmental knee arthroplasty: a study of 14, 076 matched patients from the National Joint Registry for England and Wales[J]. Bone Joint J, 2015, 97-B (6): 793- 801.
doi: 10.1302/0301-620X.97B6.35155
9 Yen PL , Davies BL . Active constraint control for image-guided robotic surgery[J]. Proc Inst Mech Eng H, 2010, 224 (5): 623- 631.
doi: 10.1243/09544119JEIM606
10 Rodriguez F , Harris S , Jakopec M , et al. Robotic clinical trials of uni-condylar arthroplasty[J]. Int J Med Robot, 2005, 1 (4): 20- 28.
doi: 10.1002/rcs.52
11 张帅, 孔祥朋, 柴伟. 2021年度关节外科手术机器人临床应用盘点[J]. 骨科, 2022, 13 (6): 562- 567.
doi: 10.3969/j.issn.1674-8573.2022.06.018
12 Pearle AD , O'Loughlin PF , Kendoff DO . Robot-assisted unicompartmental knee arthroplasty[J]. J Arthroplasty, 2010, 25 (2): 230- 237.
doi: 10.1016/j.arth.2008.09.024
13 Dunbar NJ , Roche MW , Park BH , et al. Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty[J]. J Arthroplasty, 2012, 27 (5): 803- 808. e1.
doi: 10.1016/j.arth.2011.09.021
14 Lonner JH , John TK , Conditt MA . Robotic arm-assisted UKA improves tibial component alignment: a pilot study[J]. Clin Orthop Relat Res, 2010, 468 (1): 141- 146.
doi: 10.1007/s11999-009-0977-5
15 Mofidi A , Plate JF , Lu B , et al. Assessment of accuracy of robotically assisted unicompartmental arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22 (8): 1918- 1925.
doi: 10.1007/s00167-014-2969-6
16 Plate JF , Mofidi A , Mannava S , et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty[J]. Adv Orthop, 2013, 2013, 837167.
doi: 10.1155/2013/837167
17 Dretakis K , Igoumenou VG . Outcomes of robotic-arm-assisted medial unicompartmental knee arthroplasty: minimum 3-year follow-up[J]. Eur J Orthop Surg Traumatol, 2019, 29 (6): 1305- 1311.
doi: 10.1007/s00590-019-02424-4
18 Blyth MJG , Anthony I , Rowe P , et al. Robotic arm-assisted conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial[J]. Bone Joint Res, 2017, 6 (11): 631- 639.
doi: 10.1302/2046-3758.611.BJR-2017-0060.R1
19 Smith JR , Riches PE , Rowe PJ . Accuracy of a freehand sculpting tool for unicondylar knee replacement[J]. Int J Med Robot, 2014, 10 (2): 162- 169.
doi: 10.1002/rcs.1522
20 Batailler C , White N , Ranaldi FM , et al. Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27 (4): 1232- 1240.
doi: 10.1007/s00167-018-5081-5
21 Battenberg AK , Netravali NA , Lonner JH . A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship[J]. J Robot Surg, 2020, 14 (1): 55- 60.
doi: 10.1007/s11701-018-00907-w
22 Clement ND , Al-Zibari M , Afzal I , et al. A systematic review of imageless hand-held robotic-assisted knee arthroplasty: learning curve, accuracy, functional outcome and survivorship[J]. EFORT Open Rev, 2020, 5 (5): 319- 326.
doi: 10.1302/2058-5241.5.190065
23 Boylan M , Suchman K , Vigdorchik J , et al. Technology-assisted hip and knee arthroplasties: an analysis of utilization trends[J]. J Arthroplasty, 2018, 33 (4): 1019- 1023.
doi: 10.1016/j.arth.2017.11.033
24 Selvaratnam V , Cattell A , Eyres KS , et al. Robotic-assisted patellofemoral replacement-correlation of preoperative planning with intraoperative implant position and early clinical experience: a minimum 2-year follow-up[J]. J Knee Surg, 2022, 35 (7): 731- 738.
doi: 10.1055/s-0040-1716848
25 Wolf A , Jaramaz B , Lisien B , et al. MBARS: mini bone-attached robotic system for joint arthroplasty[J]. Int J Med Robot, 2005, 1 (2): 101- 121.
doi: 10.1002/rcs.20
26 Song S , Mor A , Jaramaz B . HyBAR: hybrid bone-attached robot for joint arthroplasty[J]. Int J Med Robot, 2009, 5 (2): 223- 231.
doi: 10.1002/rcs.254
27 Masri BA , McGraw RW , Beauchamp CP . Robotrac in total knee arthroplasty. The silent assistant[J]. Am J Knee Surg, 1995, 8 (1): 20- 23.
28 Spencer EH . The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty[J]. Orthop Nurs, 1996, 15 (1): 9- 14.
29 Liow MHL , Xia Z , Wong MK , et al. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study[J]. J Arthroplasty, 2014, 29 (12): 2373- 2377.
doi: 10.1016/j.arth.2013.12.010
30 Liow MHL , Goh GS-H , Wong MK , et al. Robotic-assisted total knee arthroplasty may lead to improvement in quality-of-life measures: a 2-year follow-up of a prospective randomized trial[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25 (9): 2942- 2951.
doi: 10.1007/s00167-016-4076-3
31 Subramanian P , Wainwright TW , Bahadori S , et al. A review of the evolution of robotic-assisted total hip arthroplasty[J]. Hip Int, 2019, 29 (3): 232- 238.
doi: 10.1177/1120700019828286
32 Marchand RC , Sodhi N , Khlopas A , et al. Coronal correction for severe deformity using robotic-assisted total knee arthroplasty[J]. J Knee Surg, 2018, 31 (1): 2- 5.
doi: 10.1055/s-0037-1608840
33 Marchand RC , Sodhi N , Khlopas A , et al. Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: a short-term evaluation[J]. J Knee Surg, 2017, 30 (9): 849- 853.
doi: 10.1055/s-0037-1607450
34 Marchand RC , Sodhi N , Anis HK , et al. One-year patient outcomes for robotic-arm-assisted versus manual total knee arthroplasty[J]. J Knee Surg, 2019, 32 (11): 1063- 1068.
doi: 10.1055/s-0039-1683977
35 Mitchell J , Wang J , Bukowski B , et al. Relative clinical outcomes comparing manual and robotic-assisted total knee arthroplasty at minimum 1-year follow-up[J]. HSS J, 2021, 17 (3): 267- 273.
doi: 10.1177/15563316211028568
36 李治非, 杨阳, 苏月, 等. 我国外科手术机器人研究应用现状与思考[J]. 中国医学装备, 2019, 16 (11): 177- 181.
doi: 10.3969/J.ISSN.1672-8270.2019.11.046
LI Zhifei , YANG Yang , SU Yue , et al. Current status and thinking of research and application of surgical robots in China[J]. China Medical Equipment, 2019, 16 (11): 177- 181.
doi: 10.3969/J.ISSN.1672-8270.2019.11.046
37 赵子健. 机器人辅助全膝关节置换手术系统的研究及其在临床前的应用[D]. 上海: 上海交通大学, 2009.
38 夏润之, 童志成, 张经纬, 等. 国产"鸿鹄"膝关节置换手术机器人的早期临床研究[J]. 实用骨科杂志, 2021, 27 (2): 108- 113.108-113, 117
XIA Runzhi , TONG Zhicheng , ZHANG Jingwei , et al. Early clinical study of domestic "Skywalker" surgical robot for knee arthroplasty[J]. Journal of Practical Orthopaedics, 2021, 27 (2): 108- 113.108-113, 117
39 Chen X , Li Z , Zhang X , et al. A new robotically assisted system for total knee arthroplasty: a sheep model study[J]. Int J Med Robot, 2021, 17 (4): e2264.
40 Li Z , Chen X , Zhang X , et al. Better precision of a new robotically assisted system for total knee arthroplasty compared to conventional techniques: a sawbone model study[J]. Int J Med Robot, 2021, 17 (4): e2263.
41 Li Z , Chen X , Wang X , et al. HURWA robotic-assisted total knee arthroplasty improves component positioning and alignment-a prospective randomized and multicenter study[J]. J Orthop Translat, 2022, 33, 31- 40.
doi: 10.1016/j.jot.2021.12.004
42 柴伟, 谢杰, 张晓岗, 等. 国产全膝关节置换术辅助机器人系统的尸体实验研究[J]. 中国修复重建外科杂志, 2021, 35 (4): 409- 413.
CHAI Wei , XIE Jie , ZHANG Xiaogang , et al. A cadaveric experimental study on domestic robot-assisted total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (4): 409- 413.
43 柴伟, 谢杰, 张晓岗, 等. 国产全膝关节置换术辅助机器人系统动物实验研究[J]. 中国修复重建外科杂志, 2020, 34 (11): 1376- 1381.
CHAI Wei , XIE Jie , ZHANG Xiaogang , et al. An animal experimental study on domestic robot-assisted total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34 (11): 1376- 1381.
44 袁铭成, 石小军, 苏强, 等. 国产机器人辅助人工全膝关节置换术近期疗效的前瞻性随机对照研究[J]. 中国修复重建外科杂志, 2021, 35 (10): 1251- 1258.
YUAN Mingcheng , SHI Xiaojun , SU Qiang , et al. A prospective randomized controlled trial on the short-term effectiveness of domestic robot-assisted total knee arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (10): 1251- 1258.
45 Sires JD , Craik JD , Wilson CJ . Accuracy of bone resection in MAKO total knee robotic-assisted surgery[J]. J Knee Surg, 2021, 34 (7): 745- 748.
doi: 10.1055/s-0039-1700570
46 Song EK , Seon JK , Yim JH , et al. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA[J]. Clin Orthop Relat Res, 2013, 471 (1): 118- 126.
doi: 10.1007/s11999-012-2407-3
47 Khlopas A , Chughtai M , Hampp EL , et al. Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection[J]. Surg Technol Int, 2017, 30, 441- 446.
48 Kayani B , Konan S , Pietrzak JRT , et al. Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system[J]. J Arthroplasty, 2018, 33 (8): 2496- 2501.
doi: 10.1016/j.arth.2018.03.042
49 Agarwal N , To K , McDonnell S , et al. Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and Meta-analysis[J]. J Arthroplasty, 2020, 35 (11): 3393- 3409. e2.
doi: 10.1016/j.arth.2020.03.005
50 Kayani B , Konan S , Tahmassebi J , et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study[J]. Bone Joint J, 2018, 100-B (7): 930- 937.
51 Smith AF , Eccles CJ , Bhimani SJ , et al. Improved patient satisfaction following robotic-assisted total knee arthroplasty[J]. J Knee Surg, 2021, 34 (7): 730- 738.
52 Pugely AJ , Martin CT , Gao Y , et al. The incidence of and risk factors for 30-day surgical site infections following primary and revision total joint arthroplasty[J]. J Arthroplasty, 2015, 30 (9 Suppl): 47- 50.
53 Siebert W , Mai S , Kober R , et al. Technique and first clinical results of robot-assisted total knee replacement[J]. Knee, 2002, 9 (3): 173- 180.
54 Sodhi N , Khlopas A , Piuzzi NS , et al. The learning curve associated with robotic total knee arthroplasty[J]. J Knee Surg, 2018, 31 (1): 17- 21.
55 Bargar WL . Robots in orthopaedic surgery: past, present, and future[J]. Clin Orthop Relat Res, 2007, 463, 31- 36.
56 Moschetti WE , Konopka JF , Rubash HE , et al. Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A markov decision analysis[J]. J Arthroplasty, 2016, 31 (4): 759- 765.
57 Cavinatto L , Bronson MJ , Chen DD , et al. Robotic-assisted versus standard unicompartmental knee arthroplasty-evaluation of manuscript conflict of interests, funding, scientific quality and bibliometrics[J]. Int Orthop, 2019, 43 (8): 1865- 1871.
58 Jeon SW , Kim KI , Song SJ . Robot-assisted total knee arthroplasty does not improve long-term clinical and radiologic outcomes[J]. J Arthroplasty, 2019, 34 (8): 1656- 1661.
59 Kim YH , Yoon SH , Sung H , et al. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized, controlled trial[J]. Clin Orthop Relat Res, 2020, 478 (2): 226- 275.
60 Khlopas A , Sodhi N , Sultan AA , et al. Robotic arm-assisted total knee arthroplasty[J]. J Arthroplasty, 2018, 33 (7): 2002- 2006.
61 Zhang J , Ndou WS , Ng N , et al. Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30 (8): 2677- 2695.
[1] 刘亚军,袁强,吴静晔,韩晓光,郎昭,张勇. 130例锥形束CT影像腰椎椎弓根螺钉自动规划的初步分析[J]. 山东大学学报 (医学版), 2023, 61(3): 80-89.
[2] 林均馨,刘玉江,刘培来,万连平,张鹏,杜建春,刘泽淼,孔杰,高升焘. 固定平台单髁术后胫骨假体周围骨折2例[J]. 山东大学学报 (医学版), 2022, 60(3): 96-99.
[3] 罗德素,刘培来,苗壮. 分期外固定架牵引联合铰链膝假体置换术治疗复杂创伤性膝关节炎1例[J]. 山东大学学报 (医学版), 2022, 60(1): 121-124.
[4] 王刚,江志伟,潘华峰. 经腹会阴联合切除术的回顾与发展[J]. 山东大学学报 (医学版), 2020, 58(5): 6-10.
[5] 张春云,何伟,姜彬,危兆胜,王志刚. 导航穿刺治疗17例脑出血致脑疝手术疗效分析[J]. 山东大学学报 (医学版), 2020, 58(2): 44-48.
[6] 朱锡德,孟凡国,张建宁. 细孔钻颅微创治疗老年创伤性脑内血肿[J]. 山东大学学报 (医学版), 2019, 57(3): 69-74.
[7] 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65.
[8] 黄传旺, Salim Jeddo, 张元凯, 李德强, 刘培来, 李明. 矩形金属垫块在伴有胫骨骨缺损全膝关节置换术中的应用[J]. 山东大学学报(医学版), 2015, 53(6): 90-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[6] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[9] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[10] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .