Journal of Shandong University (Health Sciences) ›› 2018, Vol. 56 ›› Issue (4): 58-63.doi: 10.6040/j.issn.1671-7554.0.2017.998

Previous Articles    

Expression of FBP1 in granulosa cells of PCOS patients with hyperandrogenism and its significance

SHU Xin, WANG Qun, HUANG Tao, ZHAO Shigang, SHI Yuhua, LIU Hongbin   

  1. Center for Reproductive Medicine, Shandong University;
    National Research Center for Assisted Reproductive Technology and Reproductive Genetics;
    Key Laboratory for Reproductive Endocrinology(Shandong University), Ministry of Education;
    Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, Shandong, China
  • Published:2022-09-27

Abstract: Objective To explore the expression and significance of FBP1 in ovarian granulosa cells in patients with polycystic ovary syndrome(PCOS). Methods A total of 28 PCOS patients with hyperandrogenism(hyperandrogenism group), 72 PCOS patients without hyperandrogenism(non-hyperandrogenism group)and 58 healthy controls(control group)were enrolled. The expressions of FBP1 in the ovarian granulosa cells of the three groups were examined with real-time quantitative reverse transcription PCR(qRT-PCR). The correlation between FBP1 and androgen-related indicators was analyzed. The patients age, body mass index(BMI)and related hormones were analyzed. Results The hyperandrogenism group had higher incidence of obesity, hypertensive disease, hyperglycemia, metabolic syndrome and morbidity than the non-hyperandrogenism and control groups(P<0.05). The mRNA expression of FBP1 was higher in the hyperandrogenism group than that in the non-hyperandrogenism group(P=0.038)and control group(P=0.002). There was positive correlation between dehydroepiandrosterone sulfate(DHE-S)and the mRNA expression of 山 东 大 学 学 报 (医 学 版)56卷4期 -舒心,等.多囊卵巢综合征高雄激素血症患者颗粒细胞FBP1基因的表达及影响 \=-FBP1 in the hyperandrogenism group(r=0.470, P=0.021). Conclusion High expression of FBP1 is associated with hyperandrogenism of PCOS and DHE-S, and may be involved in the pathogenesis of PCOS hyperandrogenism through follicular microenvironment.

Key words: Polycystic ovary syndrome, FBP1 gene, Granulosa cell, Hyperandrogenism, Dehydroepiandrosterone sulfate

CLC Number: 

  • R711.75
[1] Dumesic DA, Oberfield SE, Stener-Victorin E, et al. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome[J]. Endocr Rev, 2015, 36(5): 487-525.
[2] 李婧博, 刘洪彬, 贾月月, 等. microRNA-183在PCOS胰岛素抵抗中的表达及其临床意义[J]. 山东大学学报(医学版), 2017, 55(1): 69-74. LI Jingbo, LIU Hongbin, JIA Yueyue, et al. Expression and clinical significance of microRNA-183 in polycystic ovary syndrome with insulin resistance[J]. Journal of Shandong University(Health Sciences), 2017, 55(1): 69-74.
[3] Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome(PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited[J]. Endocr Rev, 2016, 37(5): 467-520.
[4] Zhao S, Tian Y, Gao X, et al. Family-based analysis of eight susceptibility loci in polycystic ovary syndrome[J]. Sci Rep, 2015, 5: 12619. doi: 10.1038/srep12619.
[5] Liu T, Zhao H, Wang J, et al. The role of fructose-1,6-bisphosphatase 1 in abnormal development of ovarian follicles caused by high testosterone concentration[J]. Mol Med Rep, 2017, 16(5): 6489-6498.
[6] 贾月月, 刘洪彬, 李婧博, 等. 多囊卵巢综合征患者颗粒细胞microRNA-200b的表达及影响[J]. 山东大学学报(医学版), 2017, 55(1): 63-68. JIA Yueyue, LIU Hongbin, LI Jingbo, et al. Expression of microRNA-200b in granulosa cells of PCOS patients and its significance[J]. Journal of Shandong University(Health Sciences), 2017, 55(1): 63-68.
[7] Thomas DS, Kenneth JL. Analyzing real-time PCR data by the comparative CT method[J]. Nat Protoc, 2008, 3(6): 1101-1108.
[8] Guo X, Wang H, Wu X, et al. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions[J]. Food Chem Toxicol, 2017, 110: 13-24. doi: 10.1016/j.fct.2017.09.055
[9] Ji S, Liu X, Li B, et al. The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse[J]. Mol Hum Reprod, 2017, 23(10): 698-707.
[10] Li F, Yao L, Wu H, et al. Analysis on endocrine and metabolic features of different phenotypes of polycystic ovary syndrome patients[J]. Pak J Pharm Sci, 2016, 29(5): 1735-1738.
[11] Noroozzadeh M, Behboudi GS, Zadeh VA, et al. Hormone-induced rat model of polycystic ovary syndrome: a systematic review[J]. Life Sci, 2017, 191: 259-272. doi: 10.1016/j.lfs.2017.10.020.
[12] EI Khoudary SR. Gaps, limitations and new insights on endogenous estrogen and follicle stimulating hormone as related to risk of cardiovascular disease in women traversing the menopause: a narrative review[J]. Maturitas, 2017, 104: 44-53. doi: 10.1016/j.maturitas.2017.08.003.
[13] 哈灵侠, 石玉华, 赵君利, 等. 宁夏地区多囊卵巢综合征患者不同雄激素状态脂代谢特点的比较性分析[J]. 山东大学学报(医学版), 2013, 51(9): 88-91. HA Lingxia, SHI Yuhua, ZHAO Junli, et al. A comparison of lipid metabolism in PCOS patients with different testosterone levels in Ningxia Hui autonomous region[J]. Journal of Shandong University(Health Sciences), 2013, 51(9): 88-91.
[14] Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3[J]. Nat Genet, 2011, 43(1): 55-59.
[15] Li B, Qiu B, Lee DS, et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression[J]. Nature, 2014, 513(7517): 251-255.
[16] Drabovich A, Pavlou M, Dimitromanolakis A, et al. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay[J]. Mol Cell Proteomics, 2012, 11(8): 422-434.
[17] 邹建平, 陈颖, 李圣贤, 等. 多囊卵巢综合征高雄激素血症动物模式构建及中药治疗机制[J]. 医学研究杂志, 2017, 46(9): 171-174. ZOU Jianping, CHEN Ying, LI Shengxian, et al. Association between body fat composition,blood lipids,insulin sensitivity and different androgens in PCOS patients[J]. J Med Res, 2017, 46(9): 171-174.
[18] Gleicher N, Weghofer A, Barad DH. The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment?[J]. Reprod Biol Endocrinol, 2011, 9: 116. doi: 10.1186/1477-7827-9-116.
[19] Yu J, Li J, Chen Y, et al. Snail enhances glycolysis in the epithelial-mesenchymal transition process by targeting FBP1 in gastric cancer[J]. Cell Physiol Biochem, 2017, 43(1): 31-38.
[20] Chen YC, Chang HM, Cheng JC, et al. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells[J]. Hum Reprod, 2015, 30(9): 2190-2201.
[21] Jin X, Pan Y, Wang L, et al. Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction[J]. Cancer Res, 2017, 77(16): 4328-4341.
[22] Hasegawa T, Kamada Y, Hosoya T, et al. A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells[J]. J Steroid Biochem Mol Biol, 2017, 172: 160-165. doi: 10.1016/j.jsbmb.2017.07.002.
[23] Baranova A, Tran TP, Afendy A, et al. Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease(NAFLD)and polycystic ovarian syndrome(PCOS)[J]. J Transl Med, 2013, 11: 133. doi: 10.1186/1479-5876-11-133.
[24] Kim J, Yang G, Kim Y, et al. AMPK activators: mechanisms of action and physiological activities[J]. Exp Mol Med, 2016, 48(4): e224. doi: 10.1038/emm.2016.16.
[25] King SM, Modi DA, Eddie SL, et al. Insulin and insulin-like growth factor signaling increases proliferation and hyperplasia of the ovarian surface epithelium and decreases follicular integrity through upregulation of the PI3-kinase pathway[J]. J Ovarian Res, 2013, 6(1): 12. doi: 10.1186/1757-2215-6-12.
[1] SONG Tian, FU Linlin, WANG Qiumin, YANG Xiao, WANG Ying, BIAN Yuehong, SHI Yuhua. Expression of fatty acid transport protein 1 in granulosa cells of patients with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 22-26.
[2] NIU Qun, SHI Jingjing, FU Jiang. Effects of WNT5A gene on insulin reactivity and insulin resistance in granulosa cells [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 57-63.
[3] HAN Xiao, LI Lei, LIU Congcong. Effect of testosterone on the expression of polycystic ovary syndrome susceptibility gene Tox3 in zebrafish [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 42-47.
[4] GONG Xiaoshu, WU Richao, LI Xiufang, PAN Ye, WANG Ze, SHI Yuhua. Effect of different ovulation induction regimens for endometrial preparation on the outcome of frozen-thawed embryo transfer among 603 women with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2021, 59(3): 48-54.
[5] HA Lingxia, YIN Ting, WU Yangyang, LI Weixia, DU Yudong. Correlation between insulin resistance and expressions of local inflammatory factors and glucose transporter protein type-4 in the endometrium of patients with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2021, 59(11): 41-47.
[6] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60-66.
[7] ZHANG Suping, WANG Ze, ZHOU Yali, LI Jing, LU Xilan, BAI Hongwei, SHI Yuhua. Clinical effects of body mass index on ovulation induction treatment with letrozole among women with polycystic ovary syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(5): 81-85.
[8] ZHANG Lin, LI Jing, WANG Ze, ZHANG Jiangtao, MA Zengxiang, SHI Yuhua. Impact of thyroid-stimulating hormone on blood glucose and serum lipids in patients with polycystic ovary syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(1): 80-84.
[9] LI Jingbo, LIU Hongbin, JIA Yueyue, WANG Ze, SUN Mei, SHI Yuhua. Expression and clinical significance of microRNA-183 in polycystic ovary syndrome with insulin resistance [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(1): 69-74.
[10] JIA Yueyue, LIU Hongbin, LI Jingbo, LI Jing, ZHANG Jiangtao, SUN Mei, SHI Yuhua. Expression of microRNA-200b in granulosa cells of PCOS patients and its significance [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(1): 63-68.
[11] YANG Dongzi, MAI Zhuoyao. Features of ovarian reserve and outcomes of assisted reproductive technology in elder patients with PCOS [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(1): 26-32.
[12] MA Huiming, ZHANG Yongfang, WANG Mengmeng, LI Xin, WANG Yongfeng, TIAN Hongcheng, HU Rong, WANG Yanrong, PEI Xiuying, XU Xian. Effect of estrogen on expression of estrogen receptor-β and forkhead transcription factor 3 in human granulosa cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(5): 50-55.
[13] HA Lingxia, LI Xianghong. Expression and significance of GDF9 and BMP15 in follicular fluid of women with polycysticovary syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(10): 77-80,95.
[14] HA Ling-xia1,2, SHI Yu-hua1, ZHAO Jun-li2, CHEN Zi-jiang1. A comparison of lipid metabolism in PCOS patients with different testosterone levels in Ningxia Hui Autonomous Region [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(9): 88-91.
[15] YANG Liu, ZHANG Lei, LI Chun-hui, WAGN Zhi-ping. Association between microsatellite polymorphism of gene CYP11a and polycystic ovary syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2013, 51(10): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!