Journal of Shandong University (Health Sciences) ›› 2021, Vol. 59 ›› Issue (7): 43-49.doi: 10.6040/j.issn.1671-7554.0.2021.0031
TIAN Yaotian1, WANG Bao2, LI Yeqin1, WANG Teng1, TIAN Liwen1, HAN Bo3, WANG Cuiyan4
CLC Number:
[1] 中华医学会心血管病学分会精准医学学组, 中华心血管病杂志编辑委员会, 成人暴发性心肌炎工作组. 成人暴发性心肌炎诊断与治疗中国专家共识[J]. 中华心血管病杂志, 2017, 45(9): 742-752. [2] 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会心血管学组心肌炎协作组, 中华儿科杂志编辑委员会. 儿童心肌炎诊断建议(2018年版)[J]. 中华儿科杂志, 2019, 57(2): 87-89. [3] Sagar S, Liu PP, Cooper LT. Myocarditis [J]. Lancet, 2012, 379(9817): 738-747. [4] Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations [J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. [5] Wang HP, Zhao B, Jia HP, et al. A retrospective study: cardiac MRI of fulminant myocarditis in children-can we evaluate the short-term outcomes? [J]. PeerJ, 2016, 4: e2750. doi:10.7717/peerj.2750. [6] Di Filippo S. Improving outcomes of acute myocarditis in children[J]. Expert Rev Cardiovasc Ther, 2016, 14(1): 117-125. [7] 曾国飞, 梁仁容. 急性心肌炎的CMR应用进展[J]. 国际医学放射学杂志, 2020, 43(1): 54-58. ZENG Guofei, LIANG Renrong. The application progress of CMR in acute myocarditis [J]. Int J Med Radiol, 2020, 43(1): 54-58. [8] Leiner T, Rueckert D, Suinesiaputra A, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications [J]. J Cardiovasc Magn Reson, 2019, 21(1): 61. [9] Zhang N, Yang G, Gao Z, et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI [J]. Radiology, 2019, 291(3): 606-617. [10] Baessler B, Mannil M, Oebel S, et al. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR Images [J]. Radiology, 2018, 286(1): 103-112. [11] Banka P, Robinson JD, Uppu SC, et al. Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study [J]. J Cardiovasc Magn Reson, 2015, 17: 96. doi: 10.1186/s12968-015-0201-6. [12] Aquaro GD, Ghebru Habtemicael Y, Camastra G, et al. Prognostic value of repeating cardiac magnetic resonance in patients with acute myocarditis [J]. J Am Coll Cardiol, 2019, 74(20): 2439-2448. [13] Aquaro GD, Perfetti M, Camastra G, et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study [J]. J Am Coll Cardiol, 2017, 70(16): 1977-1987. [14] Blissett S, Chocron Y, Kovacina B, et al. Diagnostic and prognostic value of cardiac magnetic resonance in acute myocarditis: a systematic review and meta-analysis [J]. Int J Cardiovasc Imaging, 2019, 35(12): 2221-2229. [15] Yang F, Wang J, Li W, et al. The prognostic value of late gadolinium enhancement in myocarditis and clinically suspected myocarditis: systematic review and meta-analysis [J]. Eur Radiol, 2020, 30(5): 2616-2626. [16] 李浩杰, 朱慧, 杨朝霞, 等. MR心肌应变在暴发性心肌炎初步应用及与心肌水肿相关性分析[J]. 影像诊断与介入放射学, 2020, 29(1): 48-53. LI Haojie, ZHU Hui, YANG Chaoxia, et al. Value of MR myocardial strain analysis in fulminant myocarditis[J]. Diagnostic Imaging Interventional Radiology, 2020, 29(1): 48-53. [17] Awadalla M, Mahmood SS, Groarke JD, et al. Global longitudinal strain and cardiac events in patients with immune checkpoint inhibitor-related myocarditis [J]. J Am Coll Cardiol, 2020, 75(5): 467-478. [18] Luetkens JA, Schlesinger-Irsch U, Kuetting DL, et al. Feature-tracking myocardial strain analysis in acute myocarditis: diagnostic value and association with myocardial oedema [J]. Eur Radiol, 2017, 27(11): 4661-4671. [19] Buss SJ, Breuninger K, Lehrke S, et al. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy [J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 307-315. [20] Pedrizzetti G, Claus P, Kilner PJ, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use [J]. J Cardiovasc Magn Reson, 2016, 18(1): 51. [21] Amzulescu MS, De Craene M, Langet H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies [J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. [22] Claus P, Omar AMS, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications [J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. [23] Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance(SCMR)endorsed by the European Association for Cardiovascular Imaging(EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. [24] Florian A, Ludwig A, Rösch S, et al. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction(ECV)measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement(LGE)imaging [J]. Eur Heart J Cardiovasc Imaging, 2014, 15(9): 1004-1012. [25] Gräni C, Eichhorn C, Bière L, et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis [J]. J Am Coll Cardiol, 2017, 70(16): 1964-1976. doi: 10.1016/j.jacc.2017.08.050. [26] Kotanidis CP, Bazmpani MA, Haidich AB, et al. Diagnostic accuracy of cardiovascular magnetic resonance in acute myocarditis: a systematic review and meta-analysis [J]. JACC: Cardiovasc Imaging, 2018, 11(11): 1583-1590. |
[1] | CHU Yan, LIU Duanrui, ZHU Wenshuai, FAN Rong, MA Xiaoli, WANG Yunshan, JIA Yanfei. Expressions of DNA methyltransferases in gastric cancer and their clinical significance [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 1-9. |
[2] | CHEN Liyu, XIAO Juan, LYU Xianzhong, DUAN Baomin, HONG Fanzhen. Risk factors influencing prognosis of lower extremity deep vein thrombosis in pregnant and parturient women [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 38-42. |
[3] | MI Qi, SHI Shuang, LI Juan, LI Peilong, DU Lutao, WANG Chuanxin. Construction of circRNA-mediated ceRNA network and prognostic assessment model for bladder cancer [J]. Journal of Shandong University (Health Sciences), 2021, 59(6): 94-102. |
[4] | LI Xiangqing, YIN Xin, ZHAO Xuelian, ZHAO Peiqing. Expression and clinical significance of circulating CD56bright subset of NK cells in patients with Parkinsons disease [J]. Journal of Shandong University (Health Sciences), 2021, 59(2): 34-40. |
[5] | LI Yinglin, SONG Daoqing, XU Zhonghua. Identification of FKBP11 expression in clear cell renal cell carcinoma using bioinformatics analysis [J]. Journal of Shandong University (Health Sciences), 2020, 1(9): 45-51. |
[6] | Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 81-87. |
[7] | Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 61-66. |
[8] | SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer [J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47-52. |
[9] | Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16. |
[10] | YAO Yu, WANG Wenjun, LIANG Yuling. Effect of stains on the prognosis of 70 patients with pulmonary embolism [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 76-80. |
[11] | LI Xingkai, LIU Zhanye, JIANG Yunfeng, LI Jun. Clinicopathological factors and prognosis between primary central and peripheral lung squamous cell carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(9): 73-78. |
[12] | ZONG Shuai, XIAO Dongjie, LIU Hua, JIA Yanfei, MA Xiaoli, LI Huanjie, LI Ping, ZHENG Yan, WANG Yunshan. Expression of CSN5 and its correlation with the prognosis of gastric carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(7): 12-16. |
[13] | SUN Qijing, CHEN Fangfang, LI Chunxiao, ZHANG Caiqing. Clinical value of PNI and HGB in evaluating the prognosis of the middle to late stage non-small cell lung cancer patients [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(4): 55-59. |
[14] | LIN Jiaxiang, GUO Zijia, SU Peng, WANG Xiao, GUO Yaxin, WU Xiaojuan, XIANG Lei, ZHOU Zhiqiang, WANG Yan, CUI Xiujie, PAN Aifeng, GUO Chenghao. The role of CIP2A in the transformation of breast ductal epithelium and prognosis of invasive breast cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 100-106. |
[15] | ZHOU Lanlan, PAN Xueyi, GUO Yu. Clinical characteristics and prognosis of 48 patients with mixed phenotype acute leukemia [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(2): 79-83. |
|