Journal of Shandong University (Health Sciences) ›› 2026, Vol. 64 ›› Issue (2): 34-43.doi: 10.6040/j.issn.1671-7554.0.2024.0799
• Review • Previous Articles
JI Xinyu, YU Siyi, SUN Yuanyuan, JI Bing
CLC Number:
| [1] 刘芳超, 周谋望, 李涛. 基于人工智能算法的步态分析在疾病临床诊疗中的应用进展[J]. 中国康复医学杂志, 2023, 38(6): 836-840. [2] Baker R, Esquenazi A, Benedetti MG, et al. Gait analysis: clinical facts[J]. Eur J Phys Rehabil Med, 2016, 52(4): 560-574. [3] Feng J, Wick J, Bompiani E, et al. Applications of gait analysis in pediatric orthopaedics[J]. Curr Orthop Pract, 2016, 27(4): 455-464. [4] Broström EW, Esbjörnsson AC, von Heideken J, et al. Gait deviations in individuals with inflammatory joint di-seases and osteoarthritis and the usage of three-dimensional gait analysis[J]. Best Pract Res Clin Rheumatol, 2012, 26(3): 409-422. [5] Wang YF, Qi YS, Ma BX, et al. Three-dimensional gait analysis of orthopaedic common foot and ankle joint diseases[J]. Front Bioeng Biotechnol, 2024, 12: 1303035. doi:10.3389/fbioe.2024.1303035 [6] Zhang CM, Lu Y. Study on artificial intelligence: the state of the art and future prospects[J]. J Ind Inf Integr, 2021, 23: 100224. doi:10.1016/j.jii.2021.100224 [7] Mahesh B. Machine learning algorithms-a review[J]. Int J Sci Res IJSR, 2020, 9(1): 381-386. [8] Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. [9] Le CY, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [10] Ji B, Dai QH, Ji XY, et al. Detection of cervical spondylotic myelopathy based on gait analysis and deterministic learning[J]. Artif Intell Rev, 2023, 56(9): 9157-9173. [11] Watanabe T, Yoneyama T, Hayashi H, et al. Identification of the causative disease of intermittent claudication through walking motion analysis: feature analysis and differentiation[J]. Sci World J, 2014: 861529. doi:10.1155/2014/861529 [12] Kwon SB, Han HS, Lee MC, et al. Machine learning-based automatic classification of knee osteoarthritis seve-rity using gait data and radiographic images[J]. IEEE Access, 2020, 8: 120597-120603. doi:10.1109/ACCESS.2020.3006335 [13] Zhou ZR, Liang JH, Peng ZZ, et al. Gait patterns as biomarkers: a video-based approach for classifying scoliosis[EB/OL]. 2024: 2407.05726.(2024-07-08)[2024-07-20]. https://arxiv.org/abs/2407.05726v3 [14] Albuquerque P, Verlekar TT, Correia PL, et al. A spatiotemporal deep learning approach for automatic patholog-ical gait classification[J]. Sensors, 2021, 21(18): 6202. doi:10.3390/s21186202 [15] Cotton RJ, McClerklin E, Cimorelli A, et al. Transforming gait: video-based spatiotemporal gait analysis[C] //2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). New York: IEEE, 2022: 115-120. doi:10.1109/EMBC48229.2022.9871036 [16] Tao WJ, Liu T, Zheng RC, et al. Gait analysis using wearable sensors[J]. Sensors, 2012, 12(2): 2255-2283. [17] Lee SI, Park E, Huang A, et al. Objectively quantifying walking ability in degenerative spinal disorder patients using sensor equipped smart shoes[J]. Med Eng Phys, 2016, 38(5): 442-449. [18] Sikidar A, Vidyasagar KEC, Gupta M, et al. Classification of mild and severe adolescent idiopathic scoliosis(AIS)from healthy subjects via a supervised learning model based on electromyogram and ground reaction force data during gait[J]. Biocybern Biomed Eng, 2022, 42(3): 870-887. [19] Visscher RMS, Sansgiri S, Freslier M, et al. Towards validation and standardization of automatic gait event identification algorithms for use in paediatric pathological populations[J]. Gait Posture, 2021, 86: 64-69. doi:10.1016/j.gaitpost.2021.02.031 [20] Ji XY, Zeng W, Dai QH, et al. Machine learning-based detection of cervical spondylotic myelopathy using multiple gait parameters[J]. Biomim Intell Robot, 2023, 3(2): 100103. doi:10.1016/j.birob.2023.100103 [21] Berner K, Cockcroft J, Morris LD, et al. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration[J]. J Bodyw Mov Ther, 2020, 24(4): 251-260. [22] Laroche D, Tolambiya A, Morisset C, et al. A classification study of kinematic gait trajectories in hip osteoarthritis[J]. Comput Biol Med, 2014, 55: 42-48. doi:10.1016/j.compbiomed.2014.09.012 [23] Kwon SB, Ku Y, Han HS, et al. A machine learning-based diagnostic model associated with knee osteoarthritis severity[J]. Sci Rep, 2020, 10(1): 15743. doi:10.1038/s41598-020-72941-4 [24] Kidziński Ł, Yang B, Hicks JL, et al. Deep neural networks enable quantitative movement analysis using single-camera videos[J]. Nat Commun, 2020, 11(1): 4054. doi:10.1038/s41467-020-17807-z [25] Paragliola G, Coronato A. Gait anomaly detection of subjects with Parkinsons disease using a deep time series-based approach[J]. IEEE Access, 2018, 6: 73280-73292. doi:10.1109/ACCESS.2018.2882245 [26] Bertaux A, Gueugnon M, Moissenet F, et al. Gait analysis dataset of healthy volunteers and patients before and 6 months after total hip arthroplasty[J]. Sci Data, 2022, 9(1): 399. doi:10.1038/s41597-022-01483-3 [27] Kour N, Gupta S, Arora S. Gait dataset for knee osteoarthritis and Parkinsons disease analysis with severity levels[EB/OL].(2020-01-01)[2024-07-20]. https://data.mendeley.com/datasets/44pfnysy89/1. doi: 10.17632/44pfnysy89.1 [28] Horsak B, Slijepcevic D, Raberger AM, et al. GaiTRec, a large-scale ground reaction force dataset of healthy and impaired gait[J]. Sci Data, 2020, 7(1): 143. doi:10.1038/s41597-020-0481-z [29] 吕大治,霍洪峰.机器学习在步态识别中的研究综述[C] //中国体育科学学会. 第十三届全国体育科学大会论文摘要集——墙报交流(运动生物力学分会). 石家庄: 河北师范大学体育学院, 2023: 3. [30] Khera P, Kumar N. Role of machine learning in gait analysis: a review[J]. J Med Eng Technol, 2020, 44(8): 441-467. [31] Ji B, Dai QH, Ji XY, et al. Exploring gait analysis and deep feature contributions to the screening of cervical spondylotic myelopathy[J]. Appl Intell, 2023, 53(20): 24587-24602. [32] Khan O, Badhiwala JH, Witiw CD, et al. Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy[J]. Spine J, 2021, 21(10): 1659-1669. [33] Toyoda H, Terai H, Yamada K, et al. A decision tree analysis to predict clinical outcome of minimally invasive lumbar decompression surgery for lumbar spinal stenosis with and without coexisting spondylolisthesis and scoliosis[J]. Spine J, 2023, 23(7): 973-981. [34] Hayashi H, Toribatake Y, Murakami H, et al. Gait ana-lysis using a support vector machine for lumbar spinal stenosis[J]. Orthopedics, 2015, 38(11): e959-964. [35] Zeng W, Ma LM, Yuan CZ, et al. Classification of asymptomatic and osteoarthritic knee gait patterns using gait analysis via deterministic learning[J]. Artif Intell Rev, 2019, 52(1): 449-467. [36] Choi A, Yun TS, Suh SW, et al. Determination of input variables for the development of a gait asymmetry expert system in patients with idiopathic scoliosis[J]. Int J Precis Eng Manuf, 2013, 14(5): 811-818. [37] Cho JS, Cho YS, Moon SB, et al. Scoliosis screening through a machine learning based gait analysis test[J]. Int J Precis Eng Manuf, 2018, 19(12): 1861-1872. [38] Zeng W, Ismail SA, Pappas E. Detecting the presence of anterior cruciate ligament injury based on gait dynamics disparity and neural networks[J]. Artif Intell Rev, 2020, 53(5): 3153-3176. [39] Ricciardi C, Ponsiglione AM, Scala A, et al. Machine learning and regression analysis to model the length of hospital stay in patients with femur fracture[J]. Bioengineering, 2022, 9(4): 172. doi:10.3390/bioengineering9040172 [40] Kothurkar R, Gad M, Padate A, et al. Prediction of joint moments from kinematics using machine learning in children with congenital talipes equino Varus and typically developing peers[J]. J Orthop, 2024, 57: 83-89. doi:10.1016/j.jor.2024.06.016 [41] Lai DTH, Levinger P, Begg RK, et al. Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach[J]. IEEE Trans Inf Technol Biomed, 2009, 13(5): 810-817. |
| [1] | Intelligent Orthopedics Subgroup of Chinese Association of Orthopedic, Subgroup for Prevention and Control of Spinal and Spinal Cord Injury Diseases of Professional Committee for Prevention and Control of Spinal Diseases of Chinese Preventive Medicine Association. Expert consensus on measurement sites and annotation of artificial intelligence-based spinal degenerative imaging(2025) [J]. Journal of Shandong University (Health Sciences), 2026, 64(2): 1-10. |
| [2] | ZHANG Xinru, LI Yang, SUN Meng, NIE Wei, MA Zhe. Application and evaluation of Vision-LSTM model in diagnostic ultrasound imaging of Thyroid Imaging Reporting and Data System Category 4b thyroid nodules [J]. Journal of Shandong University (Health Sciences), 2025, 63(11): 68-74. |
| [3] | WU Qiqi, CHENG Miaomiao, XIAO Xiaoyan. Multimodal models in the field of kidney disease [J]. Journal of Shandong University (Health Sciences), 2025, 63(10): 117-124. |
| [4] | LIANG Bowen, LU Qingsheng. Advances in robotic-assisted endovascular aortic repair [J]. Journal of Shandong University (Health Sciences), 2024, 62(9): 61-65. |
| [5] | LIU Peilai, LI Xuezhou, LU Qunshan, SUN Houyi, YANG Jie, LI Zhe. Application and efficacy analysis of common rehabilitation devices used after knee replacement surgery [J]. Journal of Shandong University (Health Sciences), 2024, 62(10): 1-7. |
| [6] | ZHANG Jinghui, WANG Juan, ZHAO Yujie, DUAN Miao, LIU Yiran, LIN Minjuan, QIAO Xu, LI Zhen, ZUO Xiuli. Construction of a machine learning-based tongue diagnosis model for gastrointestinal diseases [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 38-47. |
| [7] | WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133. |
| [8] | Lin HUANG,Zhen CHE,Ming LI,Yuxi LI,Qing NING. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45. |
| [9] | Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20. |
| [10] | Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6. |
| [11] | Xiao LI,Zhiyuan SUN,Longjiang ZHANG. Research advances of artificial intelligence-based medical imaging in the screening, diagnosis and prediction of pneumonia [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 13-20. |
| [12] | Ziliang XU,Minwen ZHENG. Innovation and challenge of imaging artificial intelligence in medical field [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 7-12, 20. |
| [13] | Pei NIE,Ximing WANG. Research progress in the application of artificial intelligence in myocardial imaging [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 1-6. |
| [14] | Guyue ZHAO,Jin SHANG,Yang HOU. Advances in the application of artificial intelligence in coronary computed tomography angiography [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 30-35. |
| [15] | WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96. |
|
||