Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (11): 18-26.doi: 10.6040/j.issn.1671-7554.0.2024.0430
• Preclinical Medicine • Previous Articles
GONG Jie1*, YU Miao2*, LI Xiuyong3, CHEN Ying1, XU Qianru1, LI Meijuan1, LI Yitong1, LIU Xiumei1
CLC Number:
| [1] Zhao WY, Liu XP. miR-3682 promotes the progression of hepatocellular carcinoma(HCC)via inactivating AMPK signaling by targeting ADRA1A[J]. Ann Hepatol, 2022, 27(Suppl 1): 100570. doi:10.1016/j.aohep.2021.100570 [2] Chen Y, Hou XG, Li DP, et al. Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors[J]. J Pharm Anal, 2023, 13(4): 367-375. [3] Duan QJ, Zhao ZY, Zhang YJ, et al. Activatable fluorescent probes for real-time imaging-guided tumor therapy[J]. Adv Drug Deliv Rev, 2023, 196: 114793. doi:10.1016/j.addr.2023.114793 [4] Li CS, Lin Q, Hu FR, et al. Based on lapatinib innovative near-infrared fluorescent probes targeting HER1/HER2 for in vivo tumors imaging[J]. Biosens Bioelectron, 2022, 214: 114503. doi:10.1016/j.bios.2022.114503 [5] Li H, Yue LZ, Huang HW, et al. A NIR emission fluorescence probe for visualizing elevated levels of SO2 in cancer cells and living tumor[J]. J Photochem Photobiol A Chem, 2023, 441: 114684. doi:10.1016/j.jphotochem.2023.114684 [6] Wang Y, Ma T, Dong JQ. Design and synthesis of a new near-infrared and large Stokes shift fluorescence probe for NAD(P)H: quinone oxidoreductase 1 detection in living systems[J]. Dyes Pigm, 2023, 210: 110981. doi:10.1016/j.dyepig.2022.110981 [7] Sivaiah A, Prusty S, Parandhama A. Synthesis and surface modification of ultrasmall monodisperse NaYF4: Yb3+/Tm3+ upconversion nanoparticles[J]. J Indian Chem Soc, 2023, 100(5): 100990. doi:10.1016/j.jics.2023.100990 [8] Jin BR, Du ZG, Ji JC, et al. Regulation of probe density on upconversion nanoparticles enabling high-performance lateral flow assays[J]. Talanta, 2023, 256: 124327. doi:10.1016/j.talanta.2023.124327 [9] Naher HS, Ali Hussein Al-Turaihi B, Mohammed SH, et al. Upconversion nanoparticles(UCNPs): synthesis methods, imaging and cancer therapy[J]. J Drug Deliv Sci Technol, 2023, 80: 104175. doi:10.1016/j.jddst.2023.104175 [10] Song YQ, Chen M, Han L, et al. A novel ADA-coated UCNPs@NB sensing platform combined with nucleic acid amplification for rapid detection of Escherichia coli[J]. Anal Chim Acta, 2023, 1239: 340751. doi:10.1016/j.aca.2022.340751 [11] Chen GB, Li YH, Liu JL, et al. Anti-stokes luminescent organic nanoparticles for frequency upconversion biomedical imaging[J]. Nanomed Nanotechnol Biol Med, 2023, 50: 102668. doi:10.1016/j.nano.2023.102668 [12] Güleryüz B, U gur Ü, Gülsoy M. Near infrared light activated upconversion nanoparticles(UCNP)based photodynamic therapy of prostate cancers: an in vitro study[J]. Photodiagn Photodyn Ther, 2021, 36: 102616. doi:10.1016/j.pdpdt.2021.102616 [13] Liu B, Ge YH, Lu YH, et al. An NIR light-responsive “on-off-on” photoelectrochemical aptasensor for carcinoembryonic antigen assay based on Y-shaped DNA[J]. Biosens Bioelectron, 2023, 229: 115241. doi:10.1016/j.bios.2023.115241 [14] Zhang Y, Luo D, Zhang Y, et al. DNAzymes-conjugated upconversion nanoamplicon for in situ ultrasensitive detection and imaging of microRNA in vivo[J]. Chem Eng J, 2023, 454: 140489. doi:10.1016/j.cej.2022.140489 [15] Lee HS, Kang NW, Kim H, et al. Chondroitin sulfate-hybridized zein nanoparticles for tumor-targeted delivery of docetaxel[J]. Carbohydr Polym, 2021, 253: 117187. doi:10.1016/j.carbpol.2020.117187 [16] Moto M, Takamizawa N, Shibuya T, et al. Anti-diabetic effects of chondroitin sulfate on normal and type 2 diabetic mice[J]. J Funct Foods, 2018, 40: 336-340. doi:10.1016/j.jff.2017.11.019 [17] Zhu QY, Lin LZ, Zhao MM. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food[J]. Int J Biol Macromol, 2020, 159: 34-45. doi:10.1016/j.ijbiomac.2020.05.043 [18] Guo JY, Chiu CH, Wang MJ, et al. Proteoglycan serglycin promotes non-small cell lung cancer cell migration through the interaction of its glycosaminoglycans with CD44[J]. J Biomed Sci, 2020, 27(1): 2. doi:10.1186/s12929-019-0600-3 [19] Nisha R, Kumar P, Kumar U, et al. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma[J]. Int J Pharm, 2022, 622: 121848. doi:10.1016/j.ijpharm.2022.121848 [20] Pan HC, Xue WK, Zhao WJ, et al. Expression and function of chondroitin 4-sulfate and chondroitin 6-sulfate in human glioma[J]. FASEB J, 2020, 34(2): 2853-2868. [21] Rani A, Baruah R, Goyal A. Prebiotic chondroitin sulfate disaccharide isolated from chicken keel bone exhibiting anticancer potential against human colon cancer cells[J]. Nutr Cancer, 2019, 71(5): 825-839. [22] Wang Q, Li SY, Xu C, et al. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism[J]. Pharmacol Res, 2023, 190: 106740. doi:10.1016/j.phrs.2023.106740 [23] Xia P, Liu DH. Cancer stem cell markers for liver cancer and pancreatic cancer[J]. Stem Cell Res, 2022, 60: 102701. doi:10.1016/j.scr.2022.102701 [24] Zarbska I, Gzil A, Dur slewicz J, et al. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers[J]. Clin Res Hepatol Gastroenterol, 2021, 45(3): 101664. doi:10.1016/j.clinre.2021.101664 [25] Luo KP, Xu F, Yao TY, et al. TPGS and chondroitin sulfate dual-modified lipid-albumin nanosystem for targeted delivery of chemotherapeutic agent against multidrug-resistant cancer[J]. Int J Biol Macromol, 2021, 183: 1270-1282. doi:10.1016/j.ijbiomac.2021.05.070 [26] Moghadam NA, Bagheri F, Eslaminejad MB. Chondroitin sulfate modified chitosan nanoparticles as an efficient and targeted gene delivery vehicle to chondrocytes[J]. Colloids Surf B Biointerfaces, 2022, 219: 112786. doi:10.1016/j.colsurfb.2022.112786 [27] Tan TT, Yang Q, Chen D, et al. Chondroitin sulfate-mediated albumin Corona nanoparticles for the treatment of breast cancer[J]. Asian J Pharm Sci, 2021, 16(4): 508-518. [28] Zhang SF, Hu WB, Yan X, et al. Chondroitin sulfate-curcumin micelle with good stability and reduction sensitivity for anti-cancer drug carrier[J]. Mater Lett, 2021, 304: 130667. doi:10.1016/j.matlet.2021.130667 |
| [1] | YU De-Xin, CAEI Ti-Gong, MA Xiang-Xing, ZHANG Xiao-Ming, LI Chuan-Fu. Angiogenesis and maturation of hepatocellular carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 51-54. |
| [2] | CHEN Yingjun, LIU Tonggang. Comprehensive bioinformatics analysis to identify differentially expressed genes for aberrant methylation modification in HBV-associated HCC [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 101-117. |
| [3] | JIN Xinjuan, ZUO Liping, DENG Zhanhao, LI Anning, YU Dexin. Value of enhanced MRI radiomics in predicting the drug-resistant protein PFKFB3 in 135 cases of hepatocellular carcinoma [J]. Journal of Shandong University (Health Sciences), 2023, 61(6): 79-86. |
| [4] | CHANG Qing, LIU Jia, QU Ailin, YANG Yongmei. Association of NAMPT with pathological features and immune infiltration of hepatocellular carcinoma using database information [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 26-36. |
| [5] | LI Linlin, WANG Kai. Prediction of hepatocellular carcinoma prognostic genes based on bioinformatics [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 50-58. |
| [6] | ZUO Liping, JIANG Fengyang, ZHOU Binbin, FAN Jinlei, LIANG Yongfeng, DENG Zhanhao, YU Dexin. Value of preoperative multiphase MRI for predicting microvascular invasion and early recurrence of 169 hepatocellular carcinoma [J]. Journal of Shandong University (Health Sciences), 2022, 60(3): 89-95. |
| [7] | SUN Yifeng, GAO Yu, LIANG Yongyuan, GAO Yang. Expression of CPLX2 and its in vitro effects on the proliferation migration and invasion of hepatocellular carcinoma cells [J]. Journal of Shandong University (Health Sciences), 2020, 1(9): 34-39. |
| [8] | SHAO Qianqian, WANG Jingpu, WANG Qingjie. Expression and prognostic significance of apoptosis antagonizing transcription factor in hepatocellular carcinoma [J]. Journal of Shandong University (Health Sciences), 2018, 56(12): 7-12. |
| [9] | YUE Qianqian, WANG Xinyi, YANG Zhiqiang, JIANG Shu. Quantitative analysis of spectral CT imaging on hypervascular hepatic metastasis and hepatocellular carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(7): 50-55. |
| [10] | WANG Wei, CAO Yushan, SUN Daquan, HUANG Xiaoqiong, XU Guoqiang. Role of human TIMP-2 protein in the migration and invasion of hepatocellular carcinoma cell [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(7): 11-17. |
| [11] | ZONG Zhaoyun, LI Xia, HAN Zhenlong, WANG Xianteng, GUO Chun, ZHANG Lining, SHI Yongyu. Effect of tumor associated macrophages on the expression of c-Met in hepatocellular carcinoma cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(3): 14-18. |
| [12] | SONG Jia, LI Xin, LI Dan, YE Liping. Knockout Grp78 expression increases the sensitivity of hepatoma cells to erlotinib [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(6): 7-12. |
| [13] | GU Xu, WANG Xiaqing, REN Wanhua, QIN Chengyong, HAN Guoqing. Expression and clinical significance of NPRL2 and Survivin in hepatocellular carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(6): 68-72. |
| [14] | ZHANG Jizong1,2, MENG Jiuda2, DING Hai2, YI Yongxiang2, YU Zeqian3, ZHOU Jiahua3. Diagnostic value of aspartate beta-hydroxylase combined with AFP and GP73 for hepatocellular carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(6): 78-80. |
| [15] | WANG Hao1, LI Xia2, WANG Chao3, LI Guosheng1, GUO Chun1, ZHU Faliang1, ZHANG Lining1, SHI Yongyu1. Role of tumor-associated macrophages in epithelial-mesenchymal transition of human hepatocellular carcinoma cells [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2014, 52(4): 8-12. |
|
||