Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (11): 17-23.doi: 10.6040/j.issn.1671-7554.0.2020.1227
• Special topic on new progress in ophthalmic artificial intelligence • Previous Articles Next Articles
Zongyuan GE*(),Wanji HE,Lie JU,Xuan YAO,Lin WANG,Yelin HUANG,Zhiwen YANG,Jianhao XIONG,Yining BAO,Ming LI,Bing ZHANG,Xin ZHAO
CLC Number:
1 | 路寻. 卓越的人工智能科学家——马文·明斯基[J]. 自然辩证法通讯, 2010, 32 (2): 104- 111, 128. |
2 | Govindaiah A, Smith RT, Bhuiyan A. A new and improved method for automated screening of age-related macular degeneration using ensemble deep neural networks[C]. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018: 702-705. |
3 |
Russakoff DB , Lamin A , Oakley JD , et al. Deep learning for prediction of amd progression: A pilot study[J]. Invest Ophthalmol Vis Sci, 2019, 60 (2): 712- 722.
doi: 10.1167/iovs.18-25325 |
4 |
Ting DSW , Cheung CY , Lim G , et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318 (22): 2211- 2223.
doi: 10.1001/jama.2017.18152 |
5 |
Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136 (7): 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934 |
6 | Kesim C , Tas AY , Karslıoglu MZ , et al. Validation results of a deep learning algorithm for detection of diabetic retinopathy with lesion localization from retinal fundus photographs[J]. Invest Ophthalmol Vis Sci, 2020, 62 (7): 1626. |
7 | Lakra A, Tripathi P, Keshari R, et al. Segdensenet: Iris segmentation for pre and post cataract surgery[J/OL]. arXiv, 2018: 1801.10100[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2018arXiv180110100L. |
8 | Dong Y, Zhang Q, Qiao Z, et al. Classification of cataract fundus image based on deep learning[C]. Proceedings of IEEE International Conference on Imaging Systems and Techniques, 2017: 1-5. |
9 |
Varadarajan AV , Poplin R , Blumer K , et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59 (7): 2861- 2868.
doi: 10.1167/iovs.18-23887 |
10 | Yau JW , Rogers SL , Kawasaki R , et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35 (3): 556- 564. |
11 |
Ortiz A , Munilla J , Gorriz JM , et al. Ensembles of deep learning architectures for the early diagnosis of the alzheimer's disease[J]. Int J Neural Syst, 2016, 26 (7): 1650025.
doi: 10.1142/S0129065716500258 |
12 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
13 |
Diaz-Pinto A , Morales S , Naranjo V , et al. Cnns for automatic glaucoma assessment using fundus images: An extensive validation[J]. Biomed Eng Online, 2019, 18 (1): 29.
doi: 10.1186/s12938-019-0649-y |
14 | Wang X, Ju L, Zhao X, et al. Retinal abnormalities recognition using regional multitask learning[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019: 30-38. |
15 | Ruder S. An overview of multi-task learning in deep neural networks[J/OL]. arXiv, 2017: 1706.05098[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2017arXiv170605098R. |
16 | Ravindran S . How artificial intelligence is helping to prevent blindness[J]. Nature, 2019, 568 (7751): 6. |
17 | Nair A , Merkel S , Straub J , et al. Real-time pupil detection for fundus imager using single-shot detector and hard- negative training[J]. Invest Ophthalmol Vis Sci, 2020, 61 (9): PB00110- PB00110. |
18 | Mitra A , Banerjee PS , Roy S , et al. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning[J]. Comput Methods Programs Biomed, 2018, 165 (2018): 25- 35. |
19 | Selvaraju RR, Das A, Vedantam R, et al. Grad-cam: Why did you say that?[J/OL]. arXiv, 2016: 1611.07450.[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2016arXiv161107450S. |
20 | Haloi M. Improved microaneurysm detection using deep neural networks[J/OL]. arXiv, 2015: 1505.04424[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2015arXiv-150504424H. |
21 | Khojasteh P , Passos Junior LA , Carvalho T , et al. Exudate detection in fundus images using deeply-learnable features[J]. Comput Biol Med, 2019, 104 (2019): 62- 69. |
22 | Mitani A , Huang A , Venugopalan S , et al. Detection of anaemia from retinal fundus images via deep learning[J]. Nat Biomed Eng, 2020, 4 (1): 18- 27. |
23 | Quellec G , Lamard M , Conze PH , et al. Automatic detection of multiple pathologies in fundus photographs[J]. Invest Ophthalmol Vis Sci, 2020, 61 (7): 1641- 6141. |
24 |
Fang L , Cunefare D , Wang C , et al. Automatic segmentation of nine retinal layer boundaries in oct images of non-exudative amd patients using deep learning and graph search[J]. Biomed Opt Express, 2017, 8 (5): 2732- 2744.
doi: 10.1364/BOE.8.002732 |
25 |
De Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6 |
26 | Ma W, Yu S, Ma K, et al. Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification[C]. Proceedings of the Medical Image Computing and Computer Assisted Intervention-MICCAI 2019, Cham, F, 2019: 769-778. |
27 | Sevastopolsky A . Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network[J]. Pattern Recog& Ima Anal, 2017, 27 (3): 618- 624. |
28 | Sarhan MH, Albarqouni S, Yigitsoy M, et al. Multi-scale microaneurysms segmentation using embedding triplet loss[C]. Proceedings of the Medical Image Computing and Computer Assisted Intervention-MICCAI 2019, Cham, F, 2019: 174-182. |
29 |
Fu H , Cheng J , Xu Y , et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Trans Med Imaging, 2018, 37 (7): 1597- 1605.
doi: 10.1109/TMI.2018.2791488 |
30 |
Shelhamer E , Long J , Darrell T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683 |
31 | Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[J/OL]. arXiv, 2015: 1505.04597[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R. |
32 | Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J/OL]. arXiv, 2018: 1802.02611[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2018arXiv180202611C. |
33 | Yan X, Jiang W, Shi Y, et al. Ms-nas: Multi-scale neural architecture search for medical image segmentation[J/OL]. arXiv, 2020: 2007.06151[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2020arXiv200706-151Y. |
34 | Jiang Y, Tan N. Retinal vessel segmentation based on conditional deep convolutional generative adversarial networks[J/OL]. arXiv, 2018: 1805.04224[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2018arXiv180504-224J. |
35 | Redko I, Habrard A, Morvant E, et al. 2 - domain adaptation problem[M]// Redko I, Habrard A, Morvant E, et al. Advances in domain adaptation theory. Amsterdam: Elsevier, 2019: 21-36. |
36 | Ma Y, Lao S, Takikawa E, et al. Discriminant analysis in correlation similarity measure space[C]. Proceedings of the 24th international conference on Machine learning, 2007: 577-584. |
37 |
Bruzzone L , Marconcini M . Domain adaptation problems: A dasvm classification technique and a circular validation strategy[J]. IEEE Trans Pattern Anal Mach Intell, 2010, 32 (5): 770- 787.
doi: 10.1109/TPAMI.2009.57 |
38 | Gheisari M , Baghshah MS . Unsupervised domain adaptation via representation learning and adaptive classifier learning[J]. Neurocomputing, 2015, 165 (OCT.1): 300- 311. |
39 | Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J/OL]. arXiv, 2015: 1503.02531[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2015arXiv150302531H. |
40 |
Borgwardt KM , Gretton A , Rasch MJ , et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22 (14): E49- E57.
doi: 10.1093/bioinformatics/btl242 |
41 | Ghifary M, Bastiaan Kleijn W, Zhang M. Domain adaptive neural networks for object recognition[J/OL]. arXiv, 2014: 1409.6041[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2014ar, Xiv1409.6041G. |
42 | Li Y , Wang N , Shi J , et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80 (2018): 109- 117. |
43 | Gopalan R, Ruonan L, Chellappa R. Domain adaptation for object recognition: An unsupervised approach[C]. International Conference on Computer, 2011: 999-1006. |
44 | Liu M-Y, Tuzel O. Coupled generative adversarial networks[J/OL]. arXiv, 2016: 1606.07536[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2016arXiv1606075-36L. |
45 | Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation[J/OL]. arXiv, 2014: 1409.7495[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2014arXiv1409.7495G. |
46 | Bousmalis K, Trigeorgis G, Silberman N, et al. Domain separation networks[J/OL]. arXiv, 2016: 1608.06019[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2016arXiv160806019B. |
47 | Yi Z, Zhang H, Tan P, et al. Dualgan: Unsupervised dual learning for image-to-image translation[J/OL]. arXiv, 2017: 1704.02510[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2017arXiv170402510Y. |
48 | Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C].IEEE International Conference on Computer Vision (ICCV), 2017: 2242-2251. |
49 | Yang Y, Soatto S. Fda: Fourier domain adaptation for semantic segmentation[J/OL]. arXiv, 2020: 2004.05498[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2020arXiv200405498Y. |
50 | Johnson JM , Khoshgoftaar TM . Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6 (1): 1- 54. |
51 | Xiong J, He AW, Fu M, et al. Improve unseen domain generalization via enhanced local color transformation[C]. Proceedings of the Medical Image Computing and Computer Assisted Intervention-MICCAI 2020, Cham, F, 2020: 433-443. |
52 |
Davide C . Can we open the black box of ai?[J]. Nature, 2016, 538 (7623): 20.
doi: 10.1038/538020a |
53 | Ge Z, Demyanov S, Chen Z, et al. Generative openmax for multi-class open set classification[J/OL]. arXiv, 2017: 1707.07418[2020-08-16]. https://ui.adsabs.harvard.edu/abs/2017arXiv170707418G. |
54 | Heaven WD. Google's medical ai was super accurate in a lab. Real life was a different story[EB/OL]. (2020-08-16)[2020-08-18]. https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/. |
55 | Airdoc取得nmpa人工智能医疗器械三类注册证[EB/OL]. (2020-08-16)[2020-08-18]. https://www.sohu.com/a/412357707_102972. |
[1] | Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73. |
[2] | Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21. |
[3] | Jizong ZHAO. Neurosurgery plays a key role in brain science research [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 1-4. |
[4] | QU Yi, ZHANG Huankai, SONG Xian, CHU Baorui. Research progress of artificial intelligence diagnosis system in retinal diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 39-44. |
[5] | Carol Y. Cheung, RAN Anran. Artificial intelligence deep learning in glaucoma imaging: current progress and future prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 24-32. |
[6] | Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16. |
[7] | Mingguang HE,Chi LIU,Zhixi LI. Applying artificial intelligence in ophthalmic real-world practice: opportunities and challenges [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 1-10. |
|