Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (11): 11-16.doi: 10.6040/j.issn.1671-7554.0.2020.1173
• Special topic on new progress in ophthalmic artificial intelligence • Previous Articles Next Articles
Haotian LIN*(),Longhui LI,Jingjing CHEN
CLC Number:
1 |
Lee A , Taylor P , Kalpathy-Cramer J , et al. Machine learning has arrived![J]. Ophthalmology, 2017, 124 (12): 1726- 1728.
doi: 10.1016/j.ophtha.2017.08.046 |
2 |
Rahimy E . Deep learning applications in ophthalmology[J]. Curr Opin Ophthalmol, 2018, 29 (3): 254- 260.
doi: 10.1097/ICU.0000000000000470 |
3 |
Schmidt-Erfurth U , Sadeghipour A , Gerendas BS , et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1- 29.
doi: 10.1016/j.preteyeres.2018.07.004 |
4 | Zimmermann A , Carvalho KMMd , Atihe C , et al. Visual development in children aged 0 to 6 years[J]. Arq Bras Oftalmol, 2019, 82 (3): 173- 175. |
5 |
Gulshan V , Peng L , Coram M , et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316 (22): 2402- 2410.
doi: 10.1001/jama.2016.17216 |
6 |
Varadarajan AV , Poplin R , Blumer K , et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59 (7): 2861- 2868.
doi: 10.1167/iovs.18-23887 |
7 |
De Fauw J , Ledsam JR , Romera-Paredes B , et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24 (9): 1342- 1350.
doi: 10.1038/s41591-018-0107-6 |
8 |
Solebo AL , Teoh L , Rahi J . Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102 (9): 853- 857.
doi: 10.1136/archdischild-2016-310532 |
9 |
Jonas JB , Aung T , Bourne RR , et al. Glaucoma[J]. Lancet, 2017, 390 (10108): 2183- 2193.
doi: 10.1016/S0140-6736(17)31469-1 |
10 |
De Clerck EEB , Schouten JSAG , Berendschot TTJM , et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review[J]. Lancet Diabetes Endocrinol, 2015, 3 (8): 653- 663.
doi: 10.1016/S2213-8587(15)00136-9 |
11 |
Wong WL , Su X , Li X , et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2 (2): 106- 116.
doi: 10.1016/S2214-109X(13)70145-1 |
12 |
Lin H , Zhang L , Lin D , et al. Visual restoration after cataract surgery promotes functional and structural brain recovery[J]. EBioMedicine, 2018, 30: 52- 61.
doi: 10.1016/j.ebiom.2018.03.002 |
13 |
Rajkomar A , Dean J , Kohane I . Machine learning in medicine[J]. N Engl J Med, 2019, 380 (14): 1347- 1358.
doi: 10.1056/NEJMra1814259 |
14 |
Esteva A , Robicquet A , Ramsundar B , et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25 (1): 24- 29.
doi: 10.1038/s41591-018-0316-z |
15 |
Deo RC . Machine Learning in medicine[J]. Circulation, 2015, 132 (20): 1920- 1930.
doi: 10.1161/CIRCULATIONAHA.115.001593 |
16 |
Asaoka R , Murata H , Hirasawa K , et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images[J]. Am J Ophthalmol, 2019, 198: 136- 145.
doi: 10.1016/j.ajo.2018.10.007 |
17 |
Wu X , Huang Y , Liu Z , et al. Universal artificial intelligence platform for collaborative management of cataracts[J]. Br J Ophthalmol, 2019, 103 (11): 1553- 1560.
doi: 10.1136/bjophthalmol-2019-314729 |
18 | 黄玉梅, 麦菁芸, 杨祖钦, 等. 广角数码视网膜成像系统与间接检眼镜在早产儿眼底病变筛查中的应用比较[J]. 中华眼底病杂志, 2017, 33 (1): 64- 66. |
19 |
Heneghan C , Flynn J , O'Keefe M , et al. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J]. Med Image Anal, 2002, 6 (4): 407- 429.
doi: 10.1016/S1361-8415(02)00058-0 |
20 |
Rabinowitz MP , Grunwald JE , Karp KA , et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age[J]. Arch Ophthalmol, 2007, 125 (11): 1495- 1500.
doi: 10.1001/archopht.125.11.1495 |
21 |
Wallace DK , Zhao Z , Freedman SF . A pilot study using "ROPtool" to quantify plus disease in retinopathy of prematurity[J]. J AAPOS, 2007, 11 (4): 381- 387.
doi: 10.1016/j.jaapos.2007.04.008 |
22 |
Gelman R , Martinez-Perez ME , Vanderveen DK , et al. Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis[J]. Invest Ophthalmol Vis Sci, 2005, 46 (12): 4734- 4738.
doi: 10.1167/iovs.05-0646 |
23 |
Brown JM , Campbell JP , Beers A , et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136: 803- 810.
doi: 10.1001/jamaophthalmol.2018.1934 |
24 |
Wang J , Ju R , Chen Y , et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361- 368.
doi: 10.1016/j.ebiom.2018.08.033 |
25 | Lin H , Long E , Chen W , et al. Documenting rare disease data in China[J]. Science, 2015, 349 (6252): 1064. |
26 | Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nat Biomed Eng, 1, 0024 (2017). doi: 10.1038/s41551-016-0024. |
27 |
Lin H , Li R , Liu Z , et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[J]. EClinicalMedicine, 2019, 9: 52- 59.
doi: 10.1016/j.eclinm.2019.03.001 |
28 |
Lin D , Chen J , Lin Z , et al. A practical model for the identification of congenital cataracts using machine learning[J]. EBioMedicine, 2020, 51: 102621.
doi: 10.1016/j.ebiom.2019.102621 |
29 |
Lin D , Liu Z , Chen J , et al. Practical pattern of surgical timing of childhood cataract in China: a cross-sectional database study[J]. Int J Surg, 2019, 62: 56- 61.
doi: 10.1016/j.ijsu.2019.01.012 |
30 |
Zhang K , Liu X , Jiang J , et al. Prediction of postoperative complications of pediatric cataract patients using data mining[J]. J Transl Med, 2019, 17 (1): 2.
doi: 10.1186/s12967-018-1758-2 |
31 |
Gunton KB , Wasserman BN , DeBenedictis C . Strabismus[J]. Primary Care Clinics in Office Practice, 2015, 42 (3): 393- 407.
doi: 10.1016/j.pop.2015.05.006 |
32 | Lu J, Fan Z, Zheng C, et al. Automated strabismus detection for telemedicine applications[J]. arXiv, 2018, 1809.02940. |
33 |
Chen Z , Fu H , Lo WL , et al. Strabismus recognition using eye-tracking data and convolutional neural networks[J]. J Healthc Eng, 2018, 2018: 7692198.
doi: 10.1155/2018/7692198 |
34 |
Gramatikov BI . Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning[J]. Biomed Eng Online, 2017, 16 (1): 52.
doi: 10.1186/s12938-017-0339-6 |
35 |
Ikuno Y . Overview of the complications of high myopia[J]. Retina, 2017, 37 (12): 2347- 2351.
doi: 10.1097/IAE.0000000000001489 |
36 |
Lin H , Long E , Ding X , et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study[J]. PLoS Medicine, 2018, 15 (11): e1002674.
doi: 10.1371/journal.pmed.1002674 |
37 |
Yang Y , Li R , Lin D , et al. Automatic identification of myopia based on ocular appearance images using deep learning[J]. Ann Transl Med, 2020, 8 (11): 705.
doi: 10.21037/atm.2019.12.39 |
38 | Van Eenwyk J , Agah A , Giangiacomo J , et al. Artificial intelligence techniques for automatic screening of amblyogenic factors[J]. Trans Am Ophthalmol Soc, 2008, 106: 64- 73. |
39 |
Long E , Liu Z , Xiang Y , et al. Discrimination of the behavioural dynamics of visually impaired infants via deep learning[J]. Nature Biomedical Engineering, 2019, 3 (11): 860- 869.
doi: 10.1038/s41551-019-0461-9 |
40 |
Nilsson Benfatto M , qvist Seimyr G , Ygge J , et al. Screening for dyslexia using eye tracking during reading[J]. PLoS One, 2016, 11 (12): e0165508.
doi: 10.1371/journal.pone.0165508 |
41 |
Vogelsang L , Gilad-Gutnick S , Ehrenberg E , et al. Potential downside of high initial visual acuity[J]. Proc Natl Acad Sci U S A, 2018, 115 (44): 11333- 11338.
doi: 10.1073/pnas.1800901115 |
42 |
Owen CG , Rudnicka AR , Mullen R , et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program[J]. Invest Ophthalmol Vis Sci, 2009, 50 (5): 2004- 2010.
doi: 10.1167/iovs.08-3018 |
43 | Beers A, Brown J, Chang K, et al. High-resolution medical image synthesis using progressively grown generative adversarial networks[J]. arXiv, 2018, 1805.03144. |
44 | 林铎儒, 吴晓航, 刘臻臻. 眼科开展医学人工智能研究的学科优势[J]. 中国临床新医学, 2020, 13 (2): 127- 129. |
LIN Duoru , WU Xiaohan , LIU Zhenzhen . Discipline advantage of medical artificial intelligence in ophthalmology research[J]. Chinese Journal of New Clinical Medicine, 2020, 13 (2): 127- 129. |
[1] | Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73. |
[2] | Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21. |
[3] | Jizong ZHAO. Neurosurgery plays a key role in brain science research [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 1-4. |
[4] | Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 81-87. |
[5] | Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 61-66. |
[6] | QU Yi, ZHANG Huankai, SONG Xian, CHU Baorui. Research progress of artificial intelligence diagnosis system in retinal diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 39-44. |
[7] | Carol Y. Cheung, RAN Anran. Artificial intelligence deep learning in glaucoma imaging: current progress and future prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 24-32. |
[8] | GE Zongyuan, HE Wanji, JU Lie, YAO Xuan, WANG Lin, HUANG Yelin, YANG Zhiwen, XIONG Jianhao, BAO Yining, LI Ming, ZHANG Bing, ZHAO Xin. New developments in ophthalmic AI algorithms [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 17-23. |
[9] | Mingguang HE,Chi LIU,Zhixi LI. Applying artificial intelligence in ophthalmic real-world practice: opportunities and challenges [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 1-10. |
|