Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (1): 60-72.doi: 10.6040/j.issn.1671-7554.0.2024.1296
• Clinical Research • Previous Articles
LIU Jingjing1, PANG Jing2, ZHAO Xiaodan2, LIN Xin2, FU Min1, CHEN Jingjing2
CLC Number:
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. [2] 中国抗癌协会乳腺癌专业委员会,中华医学会肿瘤学分会乳腺肿瘤学组.中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187. The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association(2024 edition)[J]. China Oncology, 2023, 33(12): 1092-1187. [3] 初竹秀,赵文静,李小燕,等.218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J].山东大学学报(医学版), 2021, 59(9): 130-139. CHU Zhuxiu, ZHAO Wenjing, LI Xiaoyan, et al. Significance of neoadjuvant chemotherapy and molecular marker changes in 218 women with breast cancer[J]. Journal of Shandong University(Health Sciences), 2021, 59(9): 130-139. [4] Reig B, Heacock L, Lewin A, et al. Role of MRI to assess response to neoadjuvant therapy for breast cancer[J]. J Magn Reson Imaging, 2020, 52(6): 1587-1606. [5] 陈鑫,陈小波,梁演婷,等.基于MRI影像组学的可解释性机器学习模型预测乳腺癌新辅助治疗病理完全缓解[J]. 临床放射学杂志, 2024, 43(10): 1666-1672. CHEN Xin, CHEN Xiaobo, LIANG Yanting, et al. Interpretable machine learning model based on MRI radiomics for predicting pathological complete response to neoadjuvant therapy in breast cancer[J]. Journal of Clinical Radiology, 2024, 43(10): 1666-1672. [6] Yu YM, Wang ZB, Wang Q, et al. Radiomic model based on magnetic resonance imaging for predicting pathological complete response after neoadjuvant chemotherapy in breast cancer patients[J]. Front Oncol, 2023, 13: 1249339. doi: 10.3389/fonc.2023.1249339. [7] 李小苑,杨志企,陈湘光,等.联合ADC组学标签和激素受体预测乳腺癌新辅助化疗病理完全化解[J].中国CT和MRI杂志, 2024, 22(1): 88-90. LI Xiaoyuan, YANG Zhiqi, CHEN Xiangguang, et al. Combined apparent diffusion coefficient maps radiomics signature and hormone receptors predict pathological complete response of neoadjuvant chemotherapy in breast cancer[J]. Chinese Journal of CT and MRI, 2024, 22(1): 88-90. [8] 冯晓丹,刘菲菲,杜瑶,等.基于超声影像组学及临床特征的可解释性机器学习模型预测乳腺癌新辅助化疗疗效[J].中国超声医学杂志, 2024, 40(3): 278-282. FENG Xiaodan, LIU Feifei, DU Yao, et al. Predicting the effect of interpretable machine learning model based on ultrasound radiomics and clinical features on neoadjuvant chemotherapy for breast cancer[J]. Chinese Journal of Ultrasound in Medicine, 2024, 40(3): 278-282. [9] Yu YF, He ZF, Ouyang J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J]. EBioMedicine, 2021, 69: 103460. doi: 10.1016/j.ebiom.2021.103460. [10] Mao N, Yin P, Wang QL, et al. Added value of radiomics on mammography for breast cancer diagnosis: a feasibility study[J]. J Am Coll Radiol, 2019, 16(4 Pt A): 485-491. [11] 南帅明,邓雪英. MRI评价乳腺癌新辅助治疗疗效的研究进展[J].临床放射学杂志, 2021, 40(11): 2219-2223. [12] Hayward JH, Linden OE, Lewin AA, et al. ACR appropriateness criteria® monitoring response to neoadjuvant systemic therapy for breast cancer: 2022 update[J]. J Am Coll Radiol, 2023, 20(5s): S125-s145. [13] Zeng Q, Xiong F, Liu L, et al. Radiomics based on DCE-MRI for predicting response to neoadjuvant therapy in breast cancer[J]. Acad Radiol, 2023, 30(Suppl 2): S38-S49. [14] Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. [15] Zheng D, He XJ, Jing J. Overview of artificial intelligence in breast cancer medical imaging[J]. Clin Med, 2023, 12(2): 419. doi: 10.3390/jcm12020419. [16] Liu Y, Li X, Zhu LN, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J]. Contrast Media Mol Imaging, 2022, 2022: 6729473. doi: 10.1155/2022/6729473. [17] Hua YC, Peng QQ, Han JQ, et al. A two-center study of a combined nomogram based on mammography and MRI to predict ALN metastasis in breast cancer[J]. Magn Reson Imaging, 2024, 110: 128-137. doi: 10.1016/j.mri.2024.04.019. [18] 美国放射学院. 王殊,洪楠,译. 乳腺影像报告与数据系统图谱(2013版)[M]. 北京:北京大学医学出版社,2016. [19] Tian YQ, Hua H, Peng QQ, et al. Preoperative evaluation of Gd-EOB-DTPA-enhanced MRI radiomics-based nomogram in small solitary hepatocellular carcinoma(≤3 cm)with microvascular invasion: a two-center study[J]. J Magn Reson Imaging, 2022, 56(5): 1459-1472. [20] Wang XL, Hua H, Han JQ, et al. Evaluation of multiparametric MRI radiomics-based nomogram in prediction of response to neoadjuvant chemotherapy in breast cancer: a two-center study[J]. Clin Breast Cancer, 2023, 23(6): e331-e344. [21] Di Cosimo S, Depretto C, Miceli R, et al. Mammographic density to predict response to neoadjuvant systemic breast cancer therapy[J]. J Cancer Res Clin Oncol, 2022, 148(4): 775-781. [22] Zhao R, Lu H, Li YB, et al. Nomogram for early prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using dynamic contrast-enhanced and diffusion-weighted MRI[J]. Acad Radiol, 2022, 29(Suppl 1): S155-S163. [23] Paakkola NM, Karakatsanis A, Mauri D, et, al. The prognostic and predictive impact of low estrogen receptor expression in early breast cancer: a systematic review and meta-analysis[J]. ESMO Open, 2021, 6(6): 100289. doi: 10.1016/j.esmoop.2021.100289. [24] Zheng GY, Hou J, Shu ZY, et al. Prediction of neoadjuvant chemotherapy pathological complete response for breast cancer based on radiomics nomogram of intratumoral and derived tissue[J]. BMC Med Imaging, 2024, 24(1): 22. doi: 10.1186/s12880-024-01198-4. [25] Jiang T, Song JD, Wang XY, et al. Intratumoral and peritumoral analysis of mammography, tomosynthesis, and multiparametric MRI for predicting Ki-67 level in breast cancer: a radiomics-based study[J]. Mol Imaging Biol, 2022, 24(4): 550-559. [26] 张玉姣,宋德领,王燕飞,等.基于乳腺X线图像影像组学列线图对乳腺癌腋窝淋巴结转移的预测价值[J].放射学实践, 2022, 37(1): 48-54. ZHANG Yujiao, SONG Deling, WANG Yanfei, et al. Predictive value of breast canceraxillary lymph node metastasis based on the radiomics nomogram of mammography[J]. Radiologic Practice, 2022, 37(1): 48-54. [27] 万宏燕,徐井旭,杨瑜,等.基于X线摄影影像组学特征鉴别乳腺良恶性肿块的价值[J].医学影像学杂志, 2023, 33(5): 773-776. WAN Hongyan, XU Jingxu, YANG Yu, et al. Radiomics features of mammography in distinguishing benign and malignant breast masses[J]. Journal of Medical Imaging, 2023, 33(5): 773-776. [28] Skarping I, Larsson M, Förnvik D. Analysis of mammograms using artificial intelligence to predict response to neoadjuvant chemotherapy in breast cancer patients: proof of concept[J]. Eur Radiol, 2022, 32(5): 3131-3141. [29] Zhang K, Lin J, Lin F, et al. Radiomics of contrast-enhanced spectral mammography for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. J Xray Sci Technol, 2023, 31(4): 669-683. [30] 刘凯文,金莹莹,王守巨.人工智能辅助的磁共振成像在评估乳腺癌新辅助化疗中的应用综述[J].数据采集与处理, 2024, 39(4): 794-812. LIU Kaiwen, JIN Yingying, WANG Shouju. Artificial intelligence-assisted magnetic resonance imaging in assessment of neo adjuvant chemotherapy for breast cancer: a review[J]. Journal of Data Acquisition and Processing, 2024, 39(4): 794-812. [31] Caballo M, Sanderink WBG, Han L, et al. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(1): 97-110. [32] 岳文怡,张洪涛,高珅,等.基于机器学习的组合模型在预测乳腺癌新辅助化疗疗效中的价值[J].磁共振成像, 2024, 15(3): 93-99. YUE Wenyi, ZHANG Hongtao, GAO Shen, et al. Radiomics based on combined machine learning models for prediction of the response to neoadjuvant chemotherapy in mass enhancement breast cancer using magnetic resonance imaging[J]. Chinese Journal of Magnetic Resonance Imaging, 2024, 15(3): 93-99. [33] Sutton EJ, Onishi N, Fehr DA, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy[J]. Breast Cancer Res, 2020, 22(1): 57. doi: 10.1186/s13058-020-01291-w. [34] Periyasamy S, Prakasarao A, Menaka M, et al. Support vector machine based methodology for classification of thermal images pertaining to breast cancer[J]. J Therm Biol, 2022, 110: 103337. doi: 10.1016/j.jtherbio.2022.103337. [35] Kuramoto Y, Wada N, Uchiyama Y. Prediction of pathological complete response using radiomics on MRI in patients with breast cancer undergoing neoadjuvant pharmacotherapy[J]. Int J Comput Assist Radiol Surg, 2022, 17(4): 619-625. |
[1] | YU Zhigang, ZHENG Chao. Current status, challenges and innovative approaches of multidisciplinary treatment for breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 1-9. |
[2] | . Shandong Province expert consensus on multidisciplinary treatment of breast cancer(2024 edition) [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 10-16. |
[3] | CHENG Yueqi, WANG Fei, YU Lixiang, ZHENG Chao, YU Zhigang. Progress in the study of trastuzumab-induced cardiotoxicity in HER2-positive breast cancer patients [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 17-24. |
[4] | WANG Min, LI Xiping, TAN Jun, QIU Mei, HOU Zeyu, TIAN Ying, LUO Hongying, FAN Chaowen, QI Ling, YU Qi, XIE Wei. Lentivirus vector-mediated Gag-Caspase-8 induces apoptosis and S-phase arrest in triple-negative breast cancer primary cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 25-34. |
[5] | ZHANG Jie, ZHANG Fangfang, WANG Jingnan, LI Zeyu, SONG Ying, LI Na. Expression of circ_0000144 in breast cancer and its effect on the proliferation, migration and invasion ability of breast cancer cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 35-42. |
[6] | SONG Yawen, GUO Liantao, KONG Deguang, SUN Shengrong. VTCN1 causes poor prognosis and endocrine therapy resistance in HR+ breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 43-59. |
[7] | LIU Xiangrong, ZHANG Xinsheng, YANG Jinran, YANG Xueyan, LIU Zhao, LIU Yinghua. Association of the ratio of ω-6/ω-3 polyunsaturated fatty acids with various tumor types risk: a systematic review and Meta-analysis [J]. Journal of Shandong University (Health Sciences), 2024, 62(8): 34-48. |
[8] | LIU Xiaowen, CAO Yongquan, HOU Mingyuan, YU Dexin. Value of multiple quantitative parameters of EOB-MRI in the risk assessment of progression of HHN in hepatobiliary phase [J]. Journal of Shandong University (Health Sciences), 2024, 62(4): 31-39. |
[9] | WU Siyu, SHEN Yelong, WANG Ximing. Radiomics predicts Ki-67 labeling index in primary central nervous system lymphomas [J]. Journal of Shandong University (Health Sciences), 2024, 62(11): 67-72. |
[10] | ZHANG Nana, ZHAO Yiming, LIU Xinmin. Causal relationship between uterine leiomyomas and breast cancer: a two-sample Mendelian randomization study [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 86-93. |
[11] | JIN Shan, GAO Jie, XIE Yujiao, ZHAN Yao, DU Tiantian, WANG Chuanxin. Effects of methyltransferase PRMT5 on stabilizing USP15 to promote the occurrence and development of breast cancer [J]. Journal of Shandong University (Health Sciences), 2023, 61(7): 1-11. |
[12] | JIN Xinjuan, ZUO Liping, DENG Zhanhao, LI Anning, YU Dexin. Value of enhanced MRI radiomics in predicting the drug-resistant protein PFKFB3 in 135 cases of hepatocellular carcinoma [J]. Journal of Shandong University (Health Sciences), 2023, 61(6): 79-86. |
[13] | LI Qing, ZHANG Anna, DU Yansheng, DIAO Jiuzhou, CUI Ruojin, FU Pengrui, YUE Xinyi, ZHOU Qingbo. Influencing factors of the transformation of single demyelinating lesion of spinal cord in 47 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 37-43. |
[14] | LIU Yan, LENG Shanshan, XIA Xiaona, DONG Hao, HUANG Chencui, MENG Xiangshui. Functional outcomes of 376 patients with supratentorial spontaneous intracerebral hemorrhage based on radiomic parameters [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 59-67. |
[15] | WANG Lei, ZHANG Shuai, LIU Gang, YOU Shengnan, WANG Zhi, ZHU Shan, CHEN Chao, MA Xinlong, YANG Qiang. Comparison of MRI diagnosis of 140 cases of MCs using intelligent network automatic detection and classification methods [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 71-79. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|