Journal of Shandong University (Health Sciences) ›› 2025, Vol. 63 ›› Issue (1): 43-59.doi: 10.6040/j.issn.1671-7554.0.2024.1177
• Clinical Research • Previous Articles
SONG Yawen, GUO Liantao, KONG Deguang, SUN Shengrong
CLC Number:
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(6): 524-541. [3] Tong CWS, Wu M, Cho WCS, et al. Recent advances in the treatment of breast cancer[J]. Front Oncol, 2018, 8: 227. doi: 10.3389/fonc.2018.00227. eCollection 2018. [4] Raheem F, Karikalan SA, Batalini F, et al. Metastatic ER+ breast cancer: mechanisms of resistance and future therapeutic approaches[J]. Int J Mol Sci, 2023, 24(22): 16198. doi: 10.3390/ijms242216198. [5] Boafo GF, Shi Y, Xiao Q, et al. Targeted co-delivery of daunorubicin and cytarabine based on the hyaluronic acid prodrug modified liposomes [M]. Chinese Chemical Letters, 2022, 33(10): 4600-4604. [6] Hammond ME, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer[J]. J Clin Oncol, 2010, 28(16): 2784-2795. [7] Clusan L, Ferrière F, Flouriot G, et al. A basic review on estrogen receptor signaling pathways in breast cancer[J]. Int J Mol Sci, 2023, 24(7): 6834. doi: 10.3390/ijms24076834.. [8] Waks AG, Winer EP. Breast cancer treatment[J]. JAMA, 2019, 321(3): 288-300. [9] Pan H, Gray R, Braybrooke J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years[J]. N Engl J Med, 2017, 377(19): 1836-1846. [10] Bhat R, Thangavel H, Abdulkareem NM, et al. NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer[J]. Sci Rep, 2022, 12(1): 1972. doi: 10.1038/s41598-022-05949-7. [11] National Health Commission of The Peoples Republic of China. National guidelines for diagnosis and treatment of breast cancer 2022 in China(English version)[J]. Chin J Cancer Res, 2022, 34(3): 151-175. [12] Rajendran S, Swaroop SS, Roy J, et al. p21 activated kinase-1 and tamoxifen—a deadly nexus impacting breast cancer outcomes[J]. Biochim Biophys Acta BBA Rev Cancer, 2022, 1877(1): 188668. doi:10.1016/j.bbcan.2021.188668. [13] Turashvili G, Brogi E. Tumor heterogeneity in breast cancer[J]. Front Med, 2017, 4: 227. doi:10.3389/fmed.2017.00227. [14] Demicheli R, Ardoino I, Boracchi P, et al. Recurrence and mortality according to estrogen receptor status for breast cancer patients undergoing conservative surgery. Ipsilateral breast tumour recurrence dynamics provides clues for tumour biology within the residual breast[J]. BMC Cancer, 2010, 10: 656. doi:10.1186/1471-2407-10-656. [15] Clarke R, Tyson JJ, Michael Dixon J. Endocrine resistance in breast cancer: an overview and update[J]. Mol Cell Endocrinol, 2015, 418(3): 220-234. [16] Cardoso F, Costa A, Norton L, et al. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer(ABC2)[J]. Ann Oncol, 2014, 25(10): 1871-1888. [17] Ojo D, Wei FX, Liu Y, et al. Factors promoting tamoxifen resistance in breast cancer via stimulating breast cancer stem cell expansion[J]. Curr Med Chem, 2015, 22(19): 2360-2374. [18] Li Z, Wei HR, Li SY, et al. The role of progesterone receptors in breast cancer[J]. Drug Des Devel Ther, 2022, 16: 305-314. doi:10.2147/DDDT.S336643. [19] Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer[J]. N Engl J Med, 2015, 373(3): 209-219. [20] de Bruijn I, Kundra R, Mastrogiacomo B, et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal[J]. Cancer Res, 2023, 83(23): 3861-3867. [21] Hinohara K, Wu HJ, Vigneau S, et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance[J]. Cancer Cell, 2018, 34(6): 939-953. [22] Hu CX, Li TY, Xu YQ, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J]. Nucleic Acids Res, 2023, 51(D1): D870-D876. [23] Uhlén M, Fagerberg L, Hallstr m BM, et al. Proteomics. tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi:10.1126/science.1260419. [24] Li TW, Fu JX, Zeng ZX, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514. [25] Tang ZF, Li CW, Kang BX, et al. GEPIA a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. [26] Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646. [27] Devulapally R, Sekar TV, Paulmurugan R. Formulation of anti-miR-21 and 4-hydroxytamoxifen co-loaded biodegradable polymer nanoparticles and their antiproliferative effect on breast cancer cells[J]. Mol Pharm, 2015, 12(6): 2080-2092. [28] Tsang JYS, Tse GM. Molecular classification of breast cancer[J]. Adv Anat Pathol, 2020, 27(1): 27-35. [29] Arimidex T, Forbes JF, Cuzick J, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial[J]. Lancet Oncol, 2008, 9(1): 45-53. [30] Abdalla AN, Qattan A, Malki WH, et al. Significance of targeting VEGFR-2 and cyclin D1 in luminal-A breast cancer[J]. Molecules, 2020, 25(20): 4606. doi:10.3390/molecules25204606. [31] Hwang KT, Kim EK, Jung SH, et al. Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database[J]. Breast Cancer Res Treat, 2018, 169(2): 311-322. [32] Wang YY, Xu RJ, Zhang DY, et al. Circ-ZKSCAN1 regulates FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to promote non-small cell lung cancer progression[J]. Transl Lung Cancer Res, 2019, 8(6): 862-875. [33] Song RJ, Ma SQ, Xu JJ, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR[J]. Mol Cancer, 2023, 22(1): 16. doi:10.1186/s12943-023-01719-9. [34] Ding SN, Qiao N, Zhu QC, et al. Single-cell atlas reveals a distinct immune profile fostered by T cell-B cell crosstalk in triple negative breast cancer[J]. Cancer Commun, 2023, 43(6): 661-684. [35] Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation[J]. Int J Cancer, 2006, 118(2): 290-301. [36] Mallini P, Lennard T, Kirby J, et al. Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance[J]. Cancer Treat Rev, 2014, 40(3): 341-348. [37] Yu JL, Yan YJ, Li SS, et al. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance[J]. Cell, 2024, 187(17): 4713-4732. [38] Tsai SM, Wu SH, Hou MF, et al. The immune regulator VTCN1 gene polymorphisms and its impact on susceptibility to breast cancer[J]. J Clin Lab Anal, 2015, 29(5): 412-418. [39] Li L, Huang GM, Banta AB, et al. Cloning, characterization, and the complete 56.8-kilobase DNA sequence of the human NOTCH4 gene[J]. Genomics, 1998, 51(1): 45-58. [40] Callahan R, Raafat A. Notch signaling in mammary gland tumorigenesis[J]. J Mammary Gland Biol Neoplasia, 2001, 6(1): 23-36. [41] Gallahan D, Jhappan C, Robinson G, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis[J]. Cancer Res, 1996, 56(8): 1775-1785. [42] Lombardo Y, Faronato M, Filipovic A, et al. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells[J]. Breast Cancer Res, 2014, 16(3): R62. doi:10.1186/bcr3675. [43] Bui QT, Im JH, Jeong SB, et al. Essential role of Notch4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer[J]. Cancer Lett, 2017, 390: 115-125. doi:10.1016/j.canlet.2017.01.014. [44] Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression[J]. J Mammary Gland Biol Neoplasia, 2010, 15(2): 117-134. [45] Li YQ, Wu YY, Abbatiello TC, et al. Slug contributes to cancer progression by direct regulation of ERα signaling pathway[J]. Int J Oncol, 2015, 46(4): 1461-1472. [46] Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer[J]. BMC Cancer, 2012, 12: 91. doi:10.1186/1471-2407-12-91. [47] Jin ML, Yang L, Jeong KW. SETD1A-SOX2 axis is involved in tamoxifen resistance in estrogen receptor α-positive breast cancer cells[J]. Theranostics, 2022, 12(13): 5761-5775. [48] Gwak JM, Kim M, Kim HJ, et al. Expression of embryonal stem cell transcription factors in breast cancer: Oct4 as an indicator for poor clinical outcome and tamoxifen resistance[J]. Oncotarget, 2017, 8(22): 36305-36318. [49] Zamzam Y, Abdelmonem Zamzam Y, Aboalsoud M, et al. The utility of SOX2 and AGR2 biomarkers as early predictors of tamoxifen resistance in ER-positive breast cancer patients[J]. Int J Surg Oncol, 2021, 2021: 9947540. doi:10.1155/2021/9947540. [50] Mohd Idris RA, Mussa A, Ahmad S, et al. The effects of tamoxifen on tolerogenic cells in cancer[J]. Biology, 2022, 11(8): 1225. doi:10.3390/biology11081225. [51] Zhang RN, Yang YJ, Dong WJ, et al. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1[J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2114851119. doi:10.1073/pnas.2114851119. [52] Andrews LP, Somasundaram A, Moskovitz JM, et al. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding[J]. Sci Immunol, 2020, 5(49): eabc2728. doi:10.1126/sciimmunol.abc2728. [53] Oner G, Broeckx G, Van Berckelaer C, et al. The immune microenvironment characterisation and dynamics in hormone receptor-positive breast cancer before and after neoadjuvant endocrine therapy[J]. Cancer Med, 2023, 12(17): 17901-17913. [54] Arneth B. Tumor microenvironment[J]. Medicina(Kaunas), 2019, 56(1): E15. doi:10.3390/medicina56010015. [55] Medema JP. Cancer stem cells: the challenges ahead[J]. Nat Cell Biol, 2013, 15(4): 338-344. [56] Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications[J]. Nat Rev Clin Oncol, 2017, 14(10): 611-629. [57] Atashzar MR, Baharlou R, Karami J, et al. Cancer stem cells: a review from origin to therapeutic implications[J]. J Cell Physiol, 2020, 235(2): 790-803. [58] Méry B, Rancoule C, Guy JB, et al. Cancer stem cells: radiotherapeutic features and therapeutic targets[J]. Bull Cancer, 2016, 103(1): 48-54. [59] Abrahamsson A, Rodriguez GV, Dabrosin C. Fulvestrant-mediated attenuation of the innate immune response decreases ER+ breast cancer growth in vivo more effectively than tamoxifen[J]. Cancer Res, 2020, 80(20): 4487-4499. |
[1] | YU Zhigang, ZHENG Chao. Current status, challenges and innovative approaches of multidisciplinary treatment for breast cancer [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 1-9. |
[2] | . Shandong Province expert consensus on multidisciplinary treatment of breast cancer(2024 edition) [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 10-16. |
[3] | CHENG Yueqi, WANG Fei, YU Lixiang, ZHENG Chao, YU Zhigang. Progress in the study of trastuzumab-induced cardiotoxicity in HER2-positive breast cancer patients [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 17-24. |
[4] | WANG Min, LI Xiping, TAN Jun, QIU Mei, HOU Zeyu, TIAN Ying, LUO Hongying, FAN Chaowen, QI Ling, YU Qi, XIE Wei. Lentivirus vector-mediated Gag-Caspase-8 induces apoptosis and S-phase arrest in triple-negative breast cancer primary cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 25-34. |
[5] | ZHANG Jie, ZHANG Fangfang, WANG Jingnan, LI Zeyu, SONG Ying, LI Na. Expression of circ_0000144 in breast cancer and its effect on the proliferation, migration and invasion ability of breast cancer cells [J]. Journal of Shandong University (Health Sciences), 2025, 63(1): 35-42. |
[6] | LIU Xiangrong, ZHANG Xinsheng, YANG Jinran, YANG Xueyan, LIU Zhao, LIU Yinghua. Association of the ratio of ω-6/ω-3 polyunsaturated fatty acids with various tumor types risk: a systematic review and Meta-analysis [J]. Journal of Shandong University (Health Sciences), 2024, 62(8): 34-48. |
[7] | ZHANG Nana, ZHAO Yiming, LIU Xinmin. Causal relationship between uterine leiomyomas and breast cancer: a two-sample Mendelian randomization study [J]. Journal of Shandong University (Health Sciences), 2023, 61(8): 86-93. |
[8] | JIN Shan, GAO Jie, XIE Yujiao, ZHAN Yao, DU Tiantian, WANG Chuanxin. Effects of methyltransferase PRMT5 on stabilizing USP15 to promote the occurrence and development of breast cancer [J]. Journal of Shandong University (Health Sciences), 2023, 61(7): 1-11. |
[9] | DONG Xiangjun, LI Juan, KONG Xue, LI Peilong, ZHAO Wenjing, LIANG Yiran, WANG Lili, DU Lutao, WANG Chuanxin. Effects of circular RNA hsa_circ_0008591 on tumor biological behavior of breast cancer cells [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 78-87. |
[10] | ZHANG Jianshu, ZHANG Hanwen, ZHAO Wenjing. LncRNA ZNF528-AS1 promotes tamoxifen resistance and progression of breast cancer [J]. Journal of Shandong University (Health Sciences), 2023, 61(1): 17-26. |
[11] | LIN Yun, XIE Yanqiu. Fertility protection and preservation in breast cancer patients [J]. Journal of Shandong University (Health Sciences), 2022, 60(9): 42-46. |
[12] | HE Shiqing, LI Wanwan, DONG Shuqing, MOU Jingyi, LIU Yuying, WEI Siyu, LIU Zhao, ZHANG Jiaxin. Construction of a prognostic risk model of pyroptosis-related genes in breast cancer based on database [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 34-43. |
[13] | YANG Qifeng, ZHANG Ning. Sentinel lymph node biopsy of breast cancer in the era of precision medicine [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 1-5. |
[14] | SHEN Xiaochang, SUN Yiqing, YAN Lei, ZHAO Xingbo. Expression of aryl hydrocarbon receptor nuclear translocator-like 2 in endometrial cancer [J]. Journal of Shandong University (Health Sciences), 2022, 60(5): 74-80. |
[15] | ZHAO Tingting, QI Yana, ZHANG Ying, YUAN Bing, HAN Mingyong. Mouse breast cancer induces changes of the microenvironment in pre-metastatic lung tissue [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 24-29. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|