您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (4): 49-55.doi: 10.6040/j.issn.1671-7554.0.2022.1015

• 临床医学 • 上一篇    

基于数据库分析CCR基因对肾透明细胞癌预后的预测价值

胡立勇1,钟浩1,2,房娟娟3,国巍1,张雨露4,范医东1   

  1. 1.山东大学齐鲁医院泌尿外科, 山东 济南 250012;2.临沂市第三人民医院泌尿外科, 山东 临沂 276023;3.山东大学齐鲁医院德州医院麻醉科, 山东 德州 254300;4.山东第一医科大学临床医学系, 山东 济南 250024
  • 发布日期:2023-04-11
  • 通讯作者: 范医东. E-mail:fanyd@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2020QH245)

Prognostic value of CCR gene in clear cell renal cell carcinoma based on database

HU Liyong1, ZHONG Hao1,2, FANG Juanjuan3, GUO Wei1, ZHANG Yulu4, FAN Yidong1   

  1. 1. Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Urology, The Third Peoples Hospital of Linyi, Linyi 276023, Shandong, China;
    3. Department of Anesthesiology, Dezhou Hospital, Qilu Hospital, Shandong University, Dezhou 254300, Shandong, China;
    4. Department of Clinical Medicine, Shandong First Medical University, Jinan 250024, Shandong, China
  • Published:2023-04-11

摘要: 目的 利用信息库资料探讨趋化因子受体家族对肾透明细胞癌(ccRCC)预后的预测价值。 方法 下载并分析癌症基因组图谱(TCGA)的基因表达数据,筛选CC趋化因子受体(CCR)亚基因家族在正常组织与ccRCC组织中的差异表达基因。采用COX回归分析构建预后模型并进行相关功能学分析。 结果 从 TCGA 数据库下载包括539例ccRCC组织和72例正常组织的基因转录组数据,筛选出11个差异表达的CCR家族基因。通过多因素Cox回归分析得到 2个(CCR3与CCR10)与ccRCC预后相关的CCR基因,并以此构建预后模型。根据模型风险评分的中位值将训练集样本分为高风险组(n=184)与低风险组(n=197)。Kaplan-Meier生存分析结果显示,低风险组总生存率高于高风险组,差异有统计学意义(P<0.001)。 结论 本研究构建的CCR基因预后模型可较好地评估ccRCC患者的预后并指导其个体化治疗。

关键词: 肾透明细胞癌, 趋化因子受体家族, 预后模型, 免疫治疗

Abstract: Objective To explore the prognostic value of CC chemokine receptor(CCR)gene family in patients with clear cell renal cell carcinoma(ccRCC)based on database. Methods The gene expression data were downloaded from The Cancer Genome Atlas(TCGA)and analyzed to screen the differentially expressed genes of CCR family in normal tissues and ccRCC tissues. The prognostic model was constructed with COX regression analysis, and relevant functional analysis was carried out. Results Transcriptome data of 539 ccRCC tissues and 72 normal tissues were downloaded from the TCGA database, and 11 differentially expressed CCR genes were screened out. Two CCR genes(CCR3 and CCR10)associated with ccRCC prognosis were obtained, and the prognostic model was constructed. According to the median risk score of the model, the training set samples were divided into high risk group(n=184)and low risk group(n=197). Kaplan-Meier analysis showed that the overall survival rate of low-risk group was significantly higher than that of high-risk group(P<0.001). Conclusion The prognostic model of CCR gene constructed in this study can effectively evaluate the prognosis of ccRCC patients and guide the individualized treatment.

Key words: Clear cell renal cell carcinoma, Chemokine receptor family, Prognostic model, Immunotherapy

中图分类号: 

  • R737.11
[1] Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma[J]. Nat Rev Dis Primers, 2017, 3: 17009. doi: 10.1038/nrdp.2017.9.
[2] Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney [J]. Cancer Res, 2009, 69(11): 4674-4681.
[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[4] Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer [J]. Nat Rev Urol, 2010, 7(5): 245-257.
[5] Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and future directions [J]. CA Cancer J Clin, 2017, 67(6): 507-524.
[6] Capitanio U, Montorsi F. Renal cancer [J]. Lancet, 2016, 387(10021): 894-906.
[7] Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity [J]. Annu Rev Immunol, 2014, 32: 659-702. doi: 10.1146/annurev-immunol-032713-120145.
[8] Sokol CL, Luster AD. The chemokine system in innate immunity [J]. Cold Spring Harb Perspect Biol, 2015, 7(5): a016303. doi: 10.1101/cshperspect.a016303.
[9] Allison SJ. Kidney cancer: CCR4: a new target for RCC [J]. Nat Rev Nephrol, 2017, 13(4): 192. doi:10.1038/nrneph.2017.14.
[10] Mollica Poeta V, Massara M, Capucetti A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy [J]. Front Immunol, 2019, 10: 379. doi: 10.3389/fimmu.2019.00379.
[11] Lacalle RA, Blanco R, Carmona-Rodríguez L, et al. Chemokine receptor signaling and the hallmarks of cancer [J]. Int Rev Cell Mol Biol, 2017, 331: 181-244. doi: 10.1016/bs.ircmb.2016.09.011.
[12] Korbecki J, Kojder K, Simińska D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4 [J]. Int J Mol Sci, 2020, 21(21): 8412. doi: 10.3390/ijms21218412.
[13] Sun Z, Qin X, Fang J, et al. Multi-omics analysis of the expression and prognosis for FKBP gene family in renal cancer [J]. Front Oncol, 2021, 11: 697534. doi: 10.3389/fonc.2021.697534.
[14] Bhat AA, Nisar S, Maacha S, et al. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy [J]. Mol Cancer, 2021, 20(1): 2. doi: 10.1186/s12943-020-01294-3.
[15] Marshall LA, Marubayashi S, Jorapur A, et al. Tumors establish resistance to immunotherapy by regulating T(reg)recruitment via CCR4 [J]. J Immunother Cancer, 2020, 8(2): e000764. doi: 10.1136/jitc-2020-000764.
[16] Kraus S, Kolman T, Yeung A, et al. Chemokine receptor antagonists: role in oncology [J]. Curr Oncol Rep, 2021, 23(11): 131. doi: 10.1007/s11912-021-01117-8.
[17] Mantovani A, Savino B, Locati M, et al. The chemokine system in cancer biology and therapy [J]. Cytokine Growth Factor Rev, 2010, 21(1): 27-39.
[18] Thomas JK, Mir H, Kapur N, et al. CC chemokines are differentially expressed in breast cancer and are associated with disparity in overall survival [J]. Sci Rep, 2019, 9(1): 4014. doi: 10.1038/s41598-019-40514-9.
[19] Cho H, Lim SJ, Won KY, et al. Eosinophils in colorectal neoplasms associated with expression of CCL11 and CCL24 [J]. J Pathol Transl Med, 2016, 50(1): 45-51.
[20] Lorena SC, Oliveira DT, Dorta RG, Landman G, Kowalski LP. Eotaxin expression in oral squamous cell carcinomas with and without tumour associated tissue eosinophilia [J]. Oral Dis, 2003, 9(6): 279-283.
[21] Sharma I, Singh A, Sharma K, et al. Gene expression profiling of chemokines and their receptors in low and high grade astrocytoma [J]. Asian Pac J Cancer Prev, 2017, 18(5): 1307-1313.
[22] Jin L, Liu WR, Tian MX, et al. CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis [J]. Oncotarget, 2017, 8(3): 5135-5148.
[23] Park JY, Kang YW, Choi BY, et al. CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs [J]. J Recept Signal Transduct Res, 2017, 37(4): 416-421.
[24] Pivarcsi A, Müller A, Hippe A, et al. Tumor immune escape by the loss of homeostatic chemokine expression [J]. Proc Natl Acad Sci U S A, 2007, 104(48): 19055-19060.
[25] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature, 2001, 410(6824): 50-56.
[26] Yang XL, Liu KY, Lin FJ, et al. CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis [J]. Oncol Rep, 2017, 38(3): 1393-1401.
[27] Ji L, Qian W, Gui L, et al. Blockade of β-Catenin-Induced CCL28 suppresses gastric cancer progression via inhibition of treg cell infiltration [J]. Cancer Res, 2020, 80(10): 2004-2016.
[28] Roy I, Boyle KA, Vonderhaar EP, et al. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma [J]. Lab Invest, 2017, 97(3): 302-317.
[29] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy [J]. Cell, 2017, 168(4): 707-723.
[30] 周莹,张博恒,殷欣,等. 趋化因子CCL28在缺氧诱导肝癌细胞侵袭中的作用[J]. 中华肝脏病杂志, 2013, 21(7): 524-527. ZHOU Ying, ZHANG Boheng, YIN Xin, et al. Role of chemokine CCL28 in hypoxia- induced migration of hepatocellular carcinoma [J]. Chinese Journal of Hepatology, 2013, 21(7): 524-527.
[1] 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16.
[2] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[3] 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82.
[4] 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27.
[5] 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8.
[6] 邓晓惠,郭玲. 免疫治疗在胚胎反复种植失败中的应用进展[J]. 山东大学学报 (医学版), 2021, 59(8): 32-37.
[7] 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33.
[8] 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28.
[9] 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51.
[10] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73.
[11] 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89-95.
[12] 吴德沛,陈晓晨. 淋巴瘤免疫治疗的现状及展望[J]. 山东大学学报 (医学版), 2019, 57(7): 13-20.
[13] 黄晓军. 细胞免疫治疗在血液系统恶性肿瘤的应用进展[J]. 山东大学学报 (医学版), 2019, 57(7): 1-5.
[14] 王昭. 噬血细胞性淋巴组织细胞增多症治疗的临床研究新进展[J]. 山东大学学报 (医学版), 2019, 57(7): 44-49.
[15] 赵作辉,李翠玲,王道光,王风芹,曲宏懿,丁森泰,巩晶,吕家驹,杨静华. MnSOD乙酰化对肾透明细胞癌786-O细胞增殖、凋亡的影响[J]. 山东大学学报(医学版), 2017, 55(9): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!