山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (4): 49-55.doi: 10.6040/j.issn.1671-7554.0.2022.1015
• 临床医学 • 上一篇
胡立勇1,钟浩1,2,房娟娟3,国巍1,张雨露4,范医东1
HU Liyong1, ZHONG Hao1,2, FANG Juanjuan3, GUO Wei1, ZHANG Yulu4, FAN Yidong1
摘要: 目的 利用信息库资料探讨趋化因子受体家族对肾透明细胞癌(ccRCC)预后的预测价值。 方法 下载并分析癌症基因组图谱(TCGA)的基因表达数据,筛选CC趋化因子受体(CCR)亚基因家族在正常组织与ccRCC组织中的差异表达基因。采用COX回归分析构建预后模型并进行相关功能学分析。 结果 从 TCGA 数据库下载包括539例ccRCC组织和72例正常组织的基因转录组数据,筛选出11个差异表达的CCR家族基因。通过多因素Cox回归分析得到 2个(CCR3与CCR10)与ccRCC预后相关的CCR基因,并以此构建预后模型。根据模型风险评分的中位值将训练集样本分为高风险组(n=184)与低风险组(n=197)。Kaplan-Meier生存分析结果显示,低风险组总生存率高于高风险组,差异有统计学意义(P<0.001)。 结论 本研究构建的CCR基因预后模型可较好地评估ccRCC患者的预后并指导其个体化治疗。
中图分类号:
[1] Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma[J]. Nat Rev Dis Primers, 2017, 3: 17009. doi: 10.1038/nrdp.2017.9. [2] Beroukhim R, Brunet JP, Di Napoli A, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney [J]. Cancer Res, 2009, 69(11): 4674-4681. [3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30. [4] Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer [J]. Nat Rev Urol, 2010, 7(5): 245-257. [5] Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and future directions [J]. CA Cancer J Clin, 2017, 67(6): 507-524. [6] Capitanio U, Montorsi F. Renal cancer [J]. Lancet, 2016, 387(10021): 894-906. [7] Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity [J]. Annu Rev Immunol, 2014, 32: 659-702. doi: 10.1146/annurev-immunol-032713-120145. [8] Sokol CL, Luster AD. The chemokine system in innate immunity [J]. Cold Spring Harb Perspect Biol, 2015, 7(5): a016303. doi: 10.1101/cshperspect.a016303. [9] Allison SJ. Kidney cancer: CCR4: a new target for RCC [J]. Nat Rev Nephrol, 2017, 13(4): 192. doi:10.1038/nrneph.2017.14. [10] Mollica Poeta V, Massara M, Capucetti A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy [J]. Front Immunol, 2019, 10: 379. doi: 10.3389/fimmu.2019.00379. [11] Lacalle RA, Blanco R, Carmona-Rodríguez L, et al. Chemokine receptor signaling and the hallmarks of cancer [J]. Int Rev Cell Mol Biol, 2017, 331: 181-244. doi: 10.1016/bs.ircmb.2016.09.011. [12] Korbecki J, Kojder K, Simińska D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4 [J]. Int J Mol Sci, 2020, 21(21): 8412. doi: 10.3390/ijms21218412. [13] Sun Z, Qin X, Fang J, et al. Multi-omics analysis of the expression and prognosis for FKBP gene family in renal cancer [J]. Front Oncol, 2021, 11: 697534. doi: 10.3389/fonc.2021.697534. [14] Bhat AA, Nisar S, Maacha S, et al. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy [J]. Mol Cancer, 2021, 20(1): 2. doi: 10.1186/s12943-020-01294-3. [15] Marshall LA, Marubayashi S, Jorapur A, et al. Tumors establish resistance to immunotherapy by regulating T(reg)recruitment via CCR4 [J]. J Immunother Cancer, 2020, 8(2): e000764. doi: 10.1136/jitc-2020-000764. [16] Kraus S, Kolman T, Yeung A, et al. Chemokine receptor antagonists: role in oncology [J]. Curr Oncol Rep, 2021, 23(11): 131. doi: 10.1007/s11912-021-01117-8. [17] Mantovani A, Savino B, Locati M, et al. The chemokine system in cancer biology and therapy [J]. Cytokine Growth Factor Rev, 2010, 21(1): 27-39. [18] Thomas JK, Mir H, Kapur N, et al. CC chemokines are differentially expressed in breast cancer and are associated with disparity in overall survival [J]. Sci Rep, 2019, 9(1): 4014. doi: 10.1038/s41598-019-40514-9. [19] Cho H, Lim SJ, Won KY, et al. Eosinophils in colorectal neoplasms associated with expression of CCL11 and CCL24 [J]. J Pathol Transl Med, 2016, 50(1): 45-51. [20] Lorena SC, Oliveira DT, Dorta RG, Landman G, Kowalski LP. Eotaxin expression in oral squamous cell carcinomas with and without tumour associated tissue eosinophilia [J]. Oral Dis, 2003, 9(6): 279-283. [21] Sharma I, Singh A, Sharma K, et al. Gene expression profiling of chemokines and their receptors in low and high grade astrocytoma [J]. Asian Pac J Cancer Prev, 2017, 18(5): 1307-1313. [22] Jin L, Liu WR, Tian MX, et al. CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis [J]. Oncotarget, 2017, 8(3): 5135-5148. [23] Park JY, Kang YW, Choi BY, et al. CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs [J]. J Recept Signal Transduct Res, 2017, 37(4): 416-421. [24] Pivarcsi A, Müller A, Hippe A, et al. Tumor immune escape by the loss of homeostatic chemokine expression [J]. Proc Natl Acad Sci U S A, 2007, 104(48): 19055-19060. [25] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature, 2001, 410(6824): 50-56. [26] Yang XL, Liu KY, Lin FJ, et al. CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis [J]. Oncol Rep, 2017, 38(3): 1393-1401. [27] Ji L, Qian W, Gui L, et al. Blockade of β-Catenin-Induced CCL28 suppresses gastric cancer progression via inhibition of treg cell infiltration [J]. Cancer Res, 2020, 80(10): 2004-2016. [28] Roy I, Boyle KA, Vonderhaar EP, et al. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma [J]. Lab Invest, 2017, 97(3): 302-317. [29] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy [J]. Cell, 2017, 168(4): 707-723. [30] 周莹,张博恒,殷欣,等. 趋化因子CCL28在缺氧诱导肝癌细胞侵袭中的作用[J]. 中华肝脏病杂志, 2013, 21(7): 524-527. ZHOU Ying, ZHANG Boheng, YIN Xin, et al. Role of chemokine CCL28 in hypoxia- induced migration of hepatocellular carcinoma [J]. Chinese Journal of Hepatology, 2013, 21(7): 524-527. |
[1] | 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16. |
[2] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[3] | 秦静,杨飞,陈谦,夏涵岱,刘延国,王秀问. 晚期驱动基因阴性、PD-L1表达阴性非鳞非小细胞肺癌一线治疗方案的网状Meta分析[J]. 山东大学学报 (医学版), 2022, 60(7): 74-82. |
[4] | 高会江,魏煜程. 微创袖式肺叶切除手术:免疫治疗时代的机遇和挑战[J]. 山东大学学报 (医学版), 2022, 60(11): 23-27. |
[5] | 于金明,颜薇薇,陈大卫. 肺癌放射免疫新实践[J]. 山东大学学报 (医学版), 2021, 59(9): 1-8. |
[6] | 邓晓惠,郭玲. 免疫治疗在胚胎反复种植失败中的应用进展[J]. 山东大学学报 (医学版), 2021, 59(8): 32-37. |
[7] | 李灿楦,陈洁. 基于生物信息学分析乙酰辅酶A酰基转移酶1在肾透明细胞癌中的表达及作用机制[J]. 山东大学学报 (医学版), 2021, 59(2): 26-33. |
[8] | 庞兆飞,柳勇,赵小刚,闫涛,陈效伟,杜贾军. 基于公共数据库构建肺腺癌肿瘤干性评分模型预测免疫治疗疗效[J]. 山东大学学报 (医学版), 2021, 59(11): 19-28. |
[9] | 栗英林,宋道庆,徐忠华. 应用生物信息学方法分析肾透明细胞癌中FKBP11的表达[J]. 山东大学学报 (医学版), 2020, 1(9): 45-51. |
[10] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73. |
[11] | 罗昕,何兵,聂清生,侯震波,董军,李玉花,曾祥芹,刘伟,孔德民,曹金凤. 磁共振扩散加权成像单指数模型与扩散峰度成像模型在61例肾透明细胞癌分级中的对比[J]. 山东大学学报 (医学版), 2020, 1(7): 89-95. |
[12] | 吴德沛,陈晓晨. 淋巴瘤免疫治疗的现状及展望[J]. 山东大学学报 (医学版), 2019, 57(7): 13-20. |
[13] | 黄晓军. 细胞免疫治疗在血液系统恶性肿瘤的应用进展[J]. 山东大学学报 (医学版), 2019, 57(7): 1-5. |
[14] | 王昭. 噬血细胞性淋巴组织细胞增多症治疗的临床研究新进展[J]. 山东大学学报 (医学版), 2019, 57(7): 44-49. |
[15] | 赵作辉,李翠玲,王道光,王风芹,曲宏懿,丁森泰,巩晶,吕家驹,杨静华. MnSOD乙酰化对肾透明细胞癌786-O细胞增殖、凋亡的影响[J]. 山东大学学报(医学版), 2017, 55(9): 31-35. |
|