您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (4): 1-9.doi: 10.6040/j.issn.1671-7554.0.2022.1226

• 基础医学 •    

ACE2基因通过调控Nrf2/HO-1通路改善肾缺血再灌注损伤

张嘉颖,宿荣允,王英惠,王洪刚,柳刚   

  1. 山东大学第二医院肾内科, 山东 济南 250033
  • 发布日期:2023-04-11
  • 通讯作者: 柳刚. E-mail:lg69007@163.com
  • 基金资助:
    国家自然科学基金(81570653);山东大学荣祥再生医学基金项目(2019SDRX-01);山东大学临床研究重点项目(2020SDUCRC004)

ACE2 gene protects against renal ischemia-reperfusion injury by regulating the Nrf2/HO-1 signaling pathway

ZHANG Jiaying, SU Rongyun, WANG Yinghui, WANG Honggang, LIU Gang   

  1. Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Published:2023-04-11

摘要: 目的 探讨血管紧张素转化酶2(ACE2)对缺氧复氧诱导的肾小管上皮细胞HK-2氧化应激、炎症、凋亡及核因子E2相关因子2(Nrf2)/血红素加氧酶1(HO-1)信号通路的影响。 方法 将ACE2慢病毒转染HK-2细胞,按照实验需要分为常氧组(Control组)、缺氧复氧模型组(H/R组)、缺氧复氧转染阴性对照慢病毒组(H/R-NC组)和缺氧复氧转染ACE2慢病毒组(H/R-ACE2组)。细胞经H/R处理后,通过CCK-8法检测细胞活力;RT-PCR及ELISA法检测炎症因子白介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)和白介素-1β(IL-1β)水平;比色法检测超氧化物歧化酶(SOD)、丙二醛(MDA)表达水平;Western blotting法检测胱天蛋白酶3(Caspase-3)、B淋巴细胞瘤-2基因(Bcl-2)、Bcl-2关联X蛋白(Bax)、Nrf2、HO-1的蛋白水平。采用Nrf2抑制剂ML385以及HO-1抑制剂SnPPIX抑制Nrf2/HO-1通路,Western blotting法检测Caspase-3、Bcl-2、Bax、Nrf2、HO-1的蛋白表达水平变化,比色法检测SOD和MDA表达变化。 结果 与Control组相比,H/R组细胞活力降低(t=7.58,P<0.001),MDA含量和炎症因子IL-6、TNF-α和IL-1β表达水平以及细胞凋亡相关蛋白Caspase-3、Bax蛋白水平均增加(tMDA=11.08,PMDA<0.001;tPCR-IL-6=5.82,PPCR-IL6<0.001;tPCR-TNF-α=7.69,PPCR-TNF-α<0.001;tPCR-IL-1β=4.80,PPCR-IL-1β=0.001;tELISA-IL-6=34.11,PELISA-IL-6<0.001;tELISA-TNF-α=14.12,PELISA-TNF-α<0.001;tELISA-IL-1β=9.63,PELISA-IL-1β<0.001;tCaspase-3=2.73,PCaspase-3=0.026;tBax=27.75,PBax<0.001),SOD活性、Bcl-2和ACE2蛋白水平下降(tSOD=7.74,PSOD<0.001;tBcl-2=75.49,PBcl-2<0.001;tACE2=11.41,PACE2<0.001)。与H/R组相比,H/R-ACE2组细胞活力增加(t=3.61,P=0.002),MDA含量和炎症因子IL-6、TNF-α和IL-1β表达水平以及细胞凋亡相关蛋白Caspase-3、Bax蛋白水平均下降(tMDA=6.15,PMDA<0.001;tPCR-IL-6=3.34,PPCR-IL-6=0.006;tPCR-TNF-α=3.65,PPCR-TNF-α=0.007;tPCR-IL-1β=4.06,PPCR-IL-1β=0.004;tELISA-IL-6=14.62,PELISA-IL-6<0.001;tELISA-TNF-α=10.42,PELISA-TNF-α<0.001;tELISA-IL-1β=8.65,PELISA-IL-1β<0.001;tCaspase-3=3.74,PCaspase-3=0.006;tBax=30.52,PBax<0.001),SOD活性、Bcl-2和ACE2蛋白水平增加(tSOD=3.58,PSOD=0.007;tBcl-2=63.86,PBcl-2<0.001;tACE2=58.72,PACE2<0.001),Nrf2/HO-1信号通路被激活蛋白水平增加(tNrf2=44.55,PNrf2<0.001;tHO-1=14.19,PHO-1<0.001)。然而ML385和SnPPIX处理会抑制ACE2基因过表达在H/R中HK-2细胞的保护作用(FBax=11.02,PBax=0.003;FBcl-2=21.48,PBcl-2<0.001;FCaspase-3=20.80,PCaspase-3<0.001;FSOD=133.49,PSOD<0.001;FMDA=14.06,PMDA=0.001)。 结论 ACE2在HK-2细胞缺氧复氧损伤中具有抑制氧化应激、调节炎症、改善凋亡的作用,Nrf2/HO-1信号通路发挥重要作用。

关键词: 血管紧张素转化酶2, 缺血再灌注损伤, 氧化应激, 凋亡, 信号通路

Abstract: Objective To investigate the effects of angiotensin-converting enzyme 2(ACE2)on the oxidative stress, inflammation, apoptosis and the nuclear factor E2-related factor 2(Nrf2)/ heme oxygenase 1(HO-1)signaling pathway in renal tubular epithelial cells(HK-2)induced by hypoxia/reoxygenation(H/R). Methods HK-2 cells were transfected with ACE2 lentivirus, and divided into the control group, H/R group, H/R-NC group, and H/R-ACE2 group. After H/R treatment, cell viability was measured with CCK-8 assay; the levels of inflammatory factors including interleukin-6(IL-6), tumor necrosis factor-α(TNF-α)and interleukin-1β(IL-1β)were measured with ELISA and RT-PCR; superoxide dismutase(SOD)and malondialdehyde(MDA)levels were measured with colorimetric assay; protein levels of Caspase-3, Bcl-2, Bax, Nrf2, and HO-1 were measured with Western blotting. After ML385 and SnPPIX were used to inhibit the Nrf2/HO-1 pathway, changes in the expressions of Caspase-3, Bcl-2, Bax, Nrf2 and HO-1 were detected with Western blotting, and changes in SOD and MDA levels were detected with colorimetry. Results Compared with the control group, the H/R group showed lower cell viability(t=7.58, P<0.001), higher expression levels of MDA, IL-1β, IL-6, TNF-α, Caspase-3 and Bax(tMDA=11.08, PMDA<0.001; tPCR-IL-6=5.82, PPCR-IL6<0.001; tPCR-TNF-α=7.69, PPCR-TNF-α<0.001; tPCR-IL-1β=4.80, PPCR-IL-1β=0.001; tELISA-IL-6=34.11, PELISA-IL-6<0.001; tELISA-TNF-α=14.12, PELISA-TNF-α<0.001; tELISA-IL-1β=9.63, PELISA-IL-1β<0.001; tCaspase-3=2.73, PCaspase-3=0.026; tBax=27.75, PBax<0.001), but lower levels of SOD, Bcl-2 and ACE2(tSOD=7.74, PSOD<0.001; tBcl-2=75.49, PBcl-2<0.001; tACE2=11.41, PACE2<0.001). Compared with the H/R group, the H/R-ACE2 group had higher cell viability(t=3.61, P=0.002), lower levels of MDA, IL-1β, IL-6, TNF-α, Caspase-3 and Bax(tMDA=6.15, PMDA<0.001; tPCR-IL-6=3.34, PPCR-IL6=0.006; tPCR-TNF-α=3.65, PPCR-TNF-α=0.007; tPCR-IL-1β=4.06, PPCR-IL-1β=0.004; tELISA-IL-6=14.62, PELISA-IL-6<0.001; tELISA-TNF-α=10.42, PELISA-TNF-α<0.001; tELISA-IL-1β=8.65, PELISA-IL-1β<0.001; tCaspase-3=3.74, PCaspase-3=0.006; tBax=30.52, PBax<0.001), higher levels of SOD, Bcl-2, ACE2, Nrf2, and HO-1(tSOD=3.58, PSOD=0.007; tBcl-2=63.86, PBcl-2<0.001; tACE2=58.72, PACE2<0.001; tNrf2=44.55, PNrf2<0.001; tHO-1=14.19, PHO-1<0.001). However, ML385 and SnPPIX inhibited the protective effects of ACE2 gene overexpression on HK-2 cells under H/R(FBax=11.02, PBax=0.003; FBcl-2=21.48, PBcl-2<0.001; FCaspase-3=20.80, PCaspase-3<0.001; FSOD=133.49, PSOD<0.001; FMDA=14.06, PMDA=0.001). Conclusion ACE2 inhibits the oxidative stress, regulates inflammation, and ameliorates apoptosis in HK-2 cells under H/R, and the Nrf2/HO-1 signaling pathway may play an important role in this progress.

Key words: Angiotensin-converting enzyme 2, Ischemia-reperfusion injury, Oxidative stress, Apoptosis, Signaling pathway

中图分类号: 

  • R574
[1] Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes [J]. Kidney Int, 2012, 81(9): 819-825.
[2] Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults [J]. Clin J Am Soc Nephrol, 2015, 10(9): 1510-1518.
[3] Liu KD, Goldstein SL, Vijayan A, et al. AKI!Now initiative: recommendations for awareness, recognition, and management of AKI [J]. Clin J Am Soc Nephrol, 2020, 15(12): 1838-1847.
[4] Farrar A. Acute kidney injury [J]. Nurs Clin North Am, 2018, 53(4): 499-510.
[5] He L, Wei Q, Liu J, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms [J]. Kidney Int, 2017, 92(5): 1071-1083.
[6] Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: an insight on acute kidney injury [J]. Biomed Pharmacother, 2019, 110: 764-774. doi: 10.1016/j.biopha.2018.12.018.
[7] Verano-Braga T, Martins ALV, Motta-Santos D, et al. ACE2 in the renin-angiotensin system [J]. Clin Sci(Lond), 2020, 134(23): 3063-3078.
[8] Yamamoto K, Takeshita H, Rakugi H. ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19 [J]. Clin Sci(Lond), 2020, 134(22): 3047-3062.
[9] Hikmet F, Méar L, Edvinsson Å, et al. The protein expression profile of ACE2 in human tissues [J]. Mol Syst Biol, 2020, 16(7): e9610. doi: 10.15252/msb.20209610.
[10] Nath KA, Singh RD, Grande JP, et al. Expression of ACE2 in the intact and acutely injured kidney [J]. Kidney360, 2021, 2(7): 1095-1106.
[11] Fang F, Liu GC, Zhou X, et al. Loss of ACE2 exacerbates murine renal ischemia-reperfusion injury [J]. PLoS One, 2013, 8(8): e71433. doi: 10.1371/journal.pone.0071433.
[12] Yan S, Ye P, Aleem MT, et al. Mesenchymal stem cells overexpressing ACE2 favorably ameliorate LPS-induced inflammatory injury in mammary epithelial cells [J]. Front Immunol, 2022, 12: 796744. doi: 10.3389/fimmu.2021.796744.
[13] Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research [J]. Curr Drug Targets, 2017, 18(11): 1301-1313.
[14] Kuba K, Yamaguchi T, Penninger JM. Angiotensin-converting enzyme 2(ACE2)in the pathogenesis of ARDS in COVID-19 [J]. Front Immunol, 2021, 12: 732690. doi: 10.3389/fimmu.2021.732690.
[15] Kaltenecker CC, Domenig O, Kopecky C, et al. Critical role of neprilysin in kidney angiotensin metabolism [J]. Circ Res, 2020, 127(5): 593-606.
[16] Imai Y, Kuba K, Ohto-Nakanishi T, et al. Angiotensin-converting enzyme 2(ACE2)in disease pathogenesis [J]. Circ J, 2010, 74(3): 405-410.
[17] Kumar R, Thomas CM, Yong QC, et al. The intracrine renin-angiotensin system [J]. Clin Sci(Lond), 2012, 123(5): 273-284.
[18] Herr D, Bekes I, Wulff C. Local renin-angiotensin system in the reproductive system [J]. Front Endocrinol(Lausanne), 2013, 4: 150. doi: 10.3389/fendo.2013.00150.
[19] Liu C, Chen K, Wang H, et al. Gastrin attenuates renal ischemia/reperfusion injury by a PI3K/Akt/Bad-mediated anti-apoptosis signaling [J]. Front Pharmacol, 2020, 11: 540479. doi: 10.3389/fphar.2020.540479.
[20] Jun W, Benjanuwattra J, Chattipakorn SC, et al. Necroptosis in renal ischemia/reperfusion injury: a major mode of cell death? [J]. Arch Biochem Biophys, 2020, 689: 108433. doi: 10.1016/j.abb.2020.108433.
[21] Daemen MA, de Vries B, Buurman WA. Apoptosis and inflammation in renal reperfusion injury [J]. Transplantation, 2002, 73(11): 1693-1700.
[22] Daemen MA, vant Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation [J]. J Clin Invest, 1999, 104(5): 541-549.
[23] He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond[J]. Int J Mol Sci, 2020, 21(13): 4777. doi: 10.3390/ijms21134777.
[24] Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733.
[25] Gallorini M, Petzel C, Bblay C, et al. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability[J]. Biomaterials, 2015, 56: 114-128. doi: 10.1016/j.biomaterials.2015.03.047.
[26] Chiang SK, Chen SE, Chang LC. A dual role of heme oxygenase-1 in cancer cells[J]. Int J Mol Sci, 2018, 20(1): 39. doi: 10.3390/ijms20010039.
[27] Mansouri A, Reiner Ž, Ruscica M, et al. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases[J]. J Clin Med, 2022, 11(5): 1313. doi: 10.3390/jcm11051313.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19.
[3] 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16.
[4] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[5] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[6] 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13.
[7] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[8] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[9] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[10] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[11] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[12] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[13] 李娜,郭增丽,迟令懿,杨立卓,马志勇,付志婕. 甲醛对嗜酸性粒细胞EOL-1的急性损伤作用机制[J]. 山东大学学报 (医学版), 2022, 60(11): 54-62.
[14] 曾媛媛,杨东鹏,董柱,张本,曹一秋,王晓武. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(11): 63-69.
[15] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!