山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (4): 1-9.doi: 10.6040/j.issn.1671-7554.0.2022.1226
• 基础医学 •
张嘉颖,宿荣允,王英惠,王洪刚,柳刚
ZHANG Jiaying, SU Rongyun, WANG Yinghui, WANG Honggang, LIU Gang
摘要: 目的 探讨血管紧张素转化酶2(ACE2)对缺氧复氧诱导的肾小管上皮细胞HK-2氧化应激、炎症、凋亡及核因子E2相关因子2(Nrf2)/血红素加氧酶1(HO-1)信号通路的影响。 方法 将ACE2慢病毒转染HK-2细胞,按照实验需要分为常氧组(Control组)、缺氧复氧模型组(H/R组)、缺氧复氧转染阴性对照慢病毒组(H/R-NC组)和缺氧复氧转染ACE2慢病毒组(H/R-ACE2组)。细胞经H/R处理后,通过CCK-8法检测细胞活力;RT-PCR及ELISA法检测炎症因子白介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)和白介素-1β(IL-1β)水平;比色法检测超氧化物歧化酶(SOD)、丙二醛(MDA)表达水平;Western blotting法检测胱天蛋白酶3(Caspase-3)、B淋巴细胞瘤-2基因(Bcl-2)、Bcl-2关联X蛋白(Bax)、Nrf2、HO-1的蛋白水平。采用Nrf2抑制剂ML385以及HO-1抑制剂SnPPIX抑制Nrf2/HO-1通路,Western blotting法检测Caspase-3、Bcl-2、Bax、Nrf2、HO-1的蛋白表达水平变化,比色法检测SOD和MDA表达变化。 结果 与Control组相比,H/R组细胞活力降低(t=7.58,P<0.001),MDA含量和炎症因子IL-6、TNF-α和IL-1β表达水平以及细胞凋亡相关蛋白Caspase-3、Bax蛋白水平均增加(tMDA=11.08,PMDA<0.001;tPCR-IL-6=5.82,PPCR-IL6<0.001;tPCR-TNF-α=7.69,PPCR-TNF-α<0.001;tPCR-IL-1β=4.80,PPCR-IL-1β=0.001;tELISA-IL-6=34.11,PELISA-IL-6<0.001;tELISA-TNF-α=14.12,PELISA-TNF-α<0.001;tELISA-IL-1β=9.63,PELISA-IL-1β<0.001;tCaspase-3=2.73,PCaspase-3=0.026;tBax=27.75,PBax<0.001),SOD活性、Bcl-2和ACE2蛋白水平下降(tSOD=7.74,PSOD<0.001;tBcl-2=75.49,PBcl-2<0.001;tACE2=11.41,PACE2<0.001)。与H/R组相比,H/R-ACE2组细胞活力增加(t=3.61,P=0.002),MDA含量和炎症因子IL-6、TNF-α和IL-1β表达水平以及细胞凋亡相关蛋白Caspase-3、Bax蛋白水平均下降(tMDA=6.15,PMDA<0.001;tPCR-IL-6=3.34,PPCR-IL-6=0.006;tPCR-TNF-α=3.65,PPCR-TNF-α=0.007;tPCR-IL-1β=4.06,PPCR-IL-1β=0.004;tELISA-IL-6=14.62,PELISA-IL-6<0.001;tELISA-TNF-α=10.42,PELISA-TNF-α<0.001;tELISA-IL-1β=8.65,PELISA-IL-1β<0.001;tCaspase-3=3.74,PCaspase-3=0.006;tBax=30.52,PBax<0.001),SOD活性、Bcl-2和ACE2蛋白水平增加(tSOD=3.58,PSOD=0.007;tBcl-2=63.86,PBcl-2<0.001;tACE2=58.72,PACE2<0.001),Nrf2/HO-1信号通路被激活蛋白水平增加(tNrf2=44.55,PNrf2<0.001;tHO-1=14.19,PHO-1<0.001)。然而ML385和SnPPIX处理会抑制ACE2基因过表达在H/R中HK-2细胞的保护作用(FBax=11.02,PBax=0.003;FBcl-2=21.48,PBcl-2<0.001;FCaspase-3=20.80,PCaspase-3<0.001;FSOD=133.49,PSOD<0.001;FMDA=14.06,PMDA=0.001)。 结论 ACE2在HK-2细胞缺氧复氧损伤中具有抑制氧化应激、调节炎症、改善凋亡的作用,Nrf2/HO-1信号通路发挥重要作用。
中图分类号:
[1] Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes [J]. Kidney Int, 2012, 81(9): 819-825. [2] Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults [J]. Clin J Am Soc Nephrol, 2015, 10(9): 1510-1518. [3] Liu KD, Goldstein SL, Vijayan A, et al. AKI!Now initiative: recommendations for awareness, recognition, and management of AKI [J]. Clin J Am Soc Nephrol, 2020, 15(12): 1838-1847. [4] Farrar A. Acute kidney injury [J]. Nurs Clin North Am, 2018, 53(4): 499-510. [5] He L, Wei Q, Liu J, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms [J]. Kidney Int, 2017, 92(5): 1071-1083. [6] Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: an insight on acute kidney injury [J]. Biomed Pharmacother, 2019, 110: 764-774. doi: 10.1016/j.biopha.2018.12.018. [7] Verano-Braga T, Martins ALV, Motta-Santos D, et al. ACE2 in the renin-angiotensin system [J]. Clin Sci(Lond), 2020, 134(23): 3063-3078. [8] Yamamoto K, Takeshita H, Rakugi H. ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19 [J]. Clin Sci(Lond), 2020, 134(22): 3047-3062. [9] Hikmet F, Méar L, Edvinsson Å, et al. The protein expression profile of ACE2 in human tissues [J]. Mol Syst Biol, 2020, 16(7): e9610. doi: 10.15252/msb.20209610. [10] Nath KA, Singh RD, Grande JP, et al. Expression of ACE2 in the intact and acutely injured kidney [J]. Kidney360, 2021, 2(7): 1095-1106. [11] Fang F, Liu GC, Zhou X, et al. Loss of ACE2 exacerbates murine renal ischemia-reperfusion injury [J]. PLoS One, 2013, 8(8): e71433. doi: 10.1371/journal.pone.0071433. [12] Yan S, Ye P, Aleem MT, et al. Mesenchymal stem cells overexpressing ACE2 favorably ameliorate LPS-induced inflammatory injury in mammary epithelial cells [J]. Front Immunol, 2022, 12: 796744. doi: 10.3389/fimmu.2021.796744. [13] Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/Mas receptor axis: evidence from basic and clinical research [J]. Curr Drug Targets, 2017, 18(11): 1301-1313. [14] Kuba K, Yamaguchi T, Penninger JM. Angiotensin-converting enzyme 2(ACE2)in the pathogenesis of ARDS in COVID-19 [J]. Front Immunol, 2021, 12: 732690. doi: 10.3389/fimmu.2021.732690. [15] Kaltenecker CC, Domenig O, Kopecky C, et al. Critical role of neprilysin in kidney angiotensin metabolism [J]. Circ Res, 2020, 127(5): 593-606. [16] Imai Y, Kuba K, Ohto-Nakanishi T, et al. Angiotensin-converting enzyme 2(ACE2)in disease pathogenesis [J]. Circ J, 2010, 74(3): 405-410. [17] Kumar R, Thomas CM, Yong QC, et al. The intracrine renin-angiotensin system [J]. Clin Sci(Lond), 2012, 123(5): 273-284. [18] Herr D, Bekes I, Wulff C. Local renin-angiotensin system in the reproductive system [J]. Front Endocrinol(Lausanne), 2013, 4: 150. doi: 10.3389/fendo.2013.00150. [19] Liu C, Chen K, Wang H, et al. Gastrin attenuates renal ischemia/reperfusion injury by a PI3K/Akt/Bad-mediated anti-apoptosis signaling [J]. Front Pharmacol, 2020, 11: 540479. doi: 10.3389/fphar.2020.540479. [20] Jun W, Benjanuwattra J, Chattipakorn SC, et al. Necroptosis in renal ischemia/reperfusion injury: a major mode of cell death? [J]. Arch Biochem Biophys, 2020, 689: 108433. doi: 10.1016/j.abb.2020.108433. [21] Daemen MA, de Vries B, Buurman WA. Apoptosis and inflammation in renal reperfusion injury [J]. Transplantation, 2002, 73(11): 1693-1700. [22] Daemen MA, vant Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation [J]. J Clin Invest, 1999, 104(5): 541-549. [23] He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond[J]. Int J Mol Sci, 2020, 21(13): 4777. doi: 10.3390/ijms21134777. [24] Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733. [25] Gallorini M, Petzel C, Bblay C, et al. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability[J]. Biomaterials, 2015, 56: 114-128. doi: 10.1016/j.biomaterials.2015.03.047. [26] Chiang SK, Chen SE, Chang LC. A dual role of heme oxygenase-1 in cancer cells[J]. Int J Mol Sci, 2018, 20(1): 39. doi: 10.3390/ijms20010039. [27] Mansouri A, Reiner Ž, Ruscica M, et al. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases[J]. J Clin Med, 2022, 11(5): 1313. doi: 10.3390/jcm11051313. |
[1] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[2] | 张士宝 刘庆勇 阮喜云 陈杰 张建军 李宗武 杨广笑 王全颖. NT4-SAC-HA2-TAT融合基因表达载体的构建及鉴定[J]. 山东大学学报(医学版), 2209, 47(6): 15-19. |
[3] | 赵凯,尹心宝,张宗亮,王振林,朱冠群,王科. 黄芪皂苷Ⅱ对肾透明细胞癌细胞生长抑制作用及机制[J]. 山东大学学报 (医学版), 2023, 61(1): 10-16. |
[4] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[5] | 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66. |
[6] | 吴虹,张正铎,唐延金,祁少俊,高希宝. 5-甲基四氢叶酸对大鼠动脉粥样硬化的潜在干预作用[J]. 山东大学学报 (医学版), 2022, 60(8): 6-13. |
[7] | 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29. |
[8] | 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97. |
[9] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[10] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[11] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[12] | 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30. |
[13] | 李娜,郭增丽,迟令懿,杨立卓,马志勇,付志婕. 甲醛对嗜酸性粒细胞EOL-1的急性损伤作用机制[J]. 山东大学学报 (医学版), 2022, 60(11): 54-62. |
[14] | 曾媛媛,杨东鹏,董柱,张本,曹一秋,王晓武. 川芎嗪对野百合碱诱导大鼠肺动脉高压的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(11): 63-69. |
[15] | 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16. |
|