您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (6): 6-12.doi: 10.6040/j.issn.1671-7554.0.2017.1234

• • 上一篇    下一篇

柿叶黄酮提取物对氧糖剥夺/复糖复氧损伤的HT22细胞氧化应激的保护作用

崔春英,申超,洪艳,陈建,刘雪平   

  1. 山东大学附属省立医院老年神经科, 山东 济南 250021
  • 发布日期:2022-09-27
  • 通讯作者: 刘雪平. E-mail:lxp6203@163.com
  • 基金资助:
    国家自然科学基金(81371225);山东省科技发展计划项目(2014GSF118056)

Protective effect of flavonoid components extracted from Diopyros Kaki on oxidative stress induced by OGD/R in HT22 cells

CUI Chunying, SHEN Chao, HONG Yan, CHEN Jian, LIU Xueping   

  1. Department of Senile Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Published:2022-09-27

摘要: 目的 探讨柿叶黄酮提取物(FLDK)对氧糖剥夺/复糖复氧(OGD/R)损伤的HT22细胞氧化应激的影响及其可能机制。 方法 将HT22细胞随机分为正常对照组(Control组)、OGD/R组、OGD/R+FLDK治疗组(OGD/R+FLDK组)、OGD/R+FLDK+转录因子NF-E2相关因子(Nrf2)基因沉默组(OGD/R+FLDK+si-Nrf2组)。对HT22细胞氧糖剥夺3 h并复糖复氧24 h建立OGD/R模型;FLDK为自氧糖剥夺开始即加入,一直持续到复糖复氧结束;利用si-Nrf2阻断Nrf2通路。采用CCK-8法检测细胞活性,乳酸脱氢酶(LDH)法测定细胞损伤率,试剂盒法测定丙二醛(MDA)含量及超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性,2',7'-二氯荧光黄双乙酸盐(DCFH-DA)荧光探针检测胞内活性氧(ROS)水平,Western blotting法检测Nrf2及血红素氧合酶-1(HO-1)蛋白表达。 结果 与Control组相比,OGD/R组细胞活性下降(P<0.001),细胞损伤率升高(P<0.001),氧化产物ROS及MDA含量增加(P<0.001),抗氧化酶SOD及GSH-Px活性下降(P<0.001),全细胞HO-1蛋白表达升高(P=0.009)及胞核Nrf2蛋白表达升高(P=0.016);与OGD/R组相比,FLDK治疗可使细胞活性升高(P<0.001),细胞损伤率降低(P<0.001),氧化产物ROS及MDA含量下降(P<0.001),抗氧化酶SOD及GSH-Px活性升高(P<0.001),全细胞HO-1蛋白表达升高(P<0.001)及核内Nrf2蛋白表达升高(P=0.005);与OGD/R+FLDK组相比,进行Nrf2基因沉默预处理后,HO-1蛋白表达下降(P<0.001)及胞核Nrf2蛋白表达下降(P<0.001),ROS含量增加(P<0.001),细胞活性下降(P<0.001)。 结论 柿叶黄酮提取物对OGD/R损伤的HT22细胞氧化应激具有保护作用,其机制可能与激活Nrf2/HO-1信号通路有关。

关键词: 柿叶, 黄酮类物质, HT22细胞, 氧糖剥夺, 转录因子NF-E2相关因子, 信号通路

Abstract: Objective To investigate the protective effect of flavonoid components extracted from Diopyros Kaki(FLDK)on oxidative stress induced by oxygen glucose deprivation/reperfusion(OGD/R)in HT22 cells. Methods HT22 cells were randomly divided into normal control group(Control group), OGD/R group, OGD/R+FLDK treatment group(OGD/R+FLDK group), OGD/R +FLDK+transcription factor NF-E2 related factors(Nrf2)gene knockdowm group(OGD/R+FLDK+si-Nrf2 group). OGD/R model of HT22 cells were established by oxygen glucose deprivation for 3 h followed by a 24 h reperfusion; FLDK was added at the beginning of the OGD, and continued to the end of reperfusion; using si-Nrf2 to block the Nrf2 pathway. CCK-8 assay was used to detect cell viability; lactate deoxidizing enzyme(LDH)assay was used to detect the cell injury rate; related kits were used to detect the MDA content, 山 东 大 学 学 报 (医 学 版)56卷6期 -崔春英,等.柿叶黄酮提取物对氧糖剥夺/复糖复氧损伤的HT22细胞氧化应激的保护作用 \=-SOD and GSH-Px activity; DCFH-DA fluorescent probe was used to detect the reactive oxygen species(ROS)levels; Western blotting was used to detect the nuclear-Nrf2 and HO-1 proteins expression. Results Compared with the control group, the cell activity was decreased(P<0.001); the cell injury rate was increased(P<0.001); the ROS and MDA content were increased(P<0.001); the antioxidant enzyme SOD and GSH-Px activity were decreased(P<0.001); HO-1 protein expression was increased(P=0.009)and the nuclear-Nrf2 protein expression was increased(P=0.016)in the OGD/R group. Compared with the OGD/R group, the cell activity was increased(P<0.001), the cell injury rate was decreased(P<0.001), the ROS and MDA content were decreased(P<0.001), the antioxidant enzyme SOD and GSH-Px activity were increased(P<0.001), the HO-1 protein expression was increased(P<0.001)and nuclear-Nrf2 protein expression was increased(P=0.005). Compared with the OGD/R+FLDK group, the HO-1 protein expression was decreased(P<0.001),the nuclear-Nrf2 protein was decreased(P=0.001), the ROS level was increased(P<0.001)and the cell activity was decreased(P<0.001). Conclusion FLDK can attenuate the oxidative stress in HT22 cells induced by OGD/R injury, and it may be associated with the activation of the Nrf2/HO-1 signaling pathway.

Key words: Diopyros Kaki, Flavonoid components, HT22 cells, Oxygen glucose deprivation, Nrf2, Signaling pathway

中图分类号: 

  • R743
[1] Abilleira S, Cardona P, Ribo M, et al. Outcomes of a contemporary cohort of 536 consecutive patients with acute ischemic stroke treated with endovascular therapy[J]. Stroke, 2014, 45(4): 1046-1052.
[2] Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association[J]. Circulation, 2016, 133(4): 338-360.
[3] Fugate JE, Rabinstein AA. Contraindications to intravenous rtPA for acute stroke: a critical reappraisal[J]. Neurol Clin Pract, 2013, 3(3): 177-185.
[4] Arabian M, Aboutaleb N, Soleimani M, et al. Activation of mitochondrial katp channels mediates neuroprotection induced by chronic morphine preconditioning in hippocampal CA-1 neurons following cerebral ischemia[J]. Adv Med Sci, 2017, 63(2): 213-219.
[5] Fu D, Liu H, Li S, et al. Antioxidative and antiapoptotic effects of delta-opioid peptide[D-Ala(2), D-Leu(5)] enkephalin on spinal cord ischemia-reperfusion injury in rabbits[J]. Front Neurosci, 2017, 11: 603. doi: 10.3389/fnins.2017.00603.
[6] 王燕. 柿叶中黄酮类化合物的研究进展[J]. 亚太传统医药, 2011, 12(4): 173-174. WANG Yan. The progress of flavonoids from persimmon leaves[J]. Asia-Pacific traditional medicine, 2011, 12(4): 173-174.
[7] Ma Y, Ma B, Shang Y, et al. Flavonoid-rich ethanol extract from the leaves of diospyros kaki attenuates cognitive deficits, amyloid-beta production, oxidative stress, and neuroinflammation in APP/PS1 transgenic mice[J]. Brain Res, 2018, 1678: 85-93. doi: 10.1016/j.brainres.2017.10.001. Epub 2017 Oct 14.
[8] 吴小凡,马斌,侯训尧,等. 柿叶提取物对HEK293-APPswe转基因细胞模型的抗氧化作用及对Nrf2/HO-1途径的影响[J]. 中国免疫学杂志, 2017, 124(6): 854-858. WU Xiaofan, MA Bin, HOU Xunyao, et al. Antioxidant effect of persimmon leaf extract to HEK293-APPswe transgenic cells and effect to Nrf2/HO-1 pathway[J]. Chin J Immunol, 2017, 124(6): 854-858.
[9] Bei W, Zang L, Guo J, et al. Neuroprotective effects of a standardized flavonoid extract from diospyros kaki leaves[J]. J Ethnopharmacol, 2009, 126(1): 134-142.
[10] Zhang L, Huang P, Chen H, et al. The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKɑ1 signaling-mediated autophagy[J]. Sci Rep, 2017, 7(1): 163-173.
[11] Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: enhancement of the glyoxalase pathway[J]. Redox Biol, 2018, 14: 465-473. doi: 10.1016/j.redox.2017.10.015.
[12] Fang X, Li Y, Qiao J, et al. Neuroprotective effect of total flavonoids from ilex pubescens against focal cerebral ischemia/reperfusion injury in rats[J]. Mol Med Rep, 2017, 16(5): 7439-7449.
[13] 王姿颖,张岫美,魏欣冰,等. 异黄酮类化合物N-2035对大鼠局灶性脑缺血再灌注脑组织损伤的保护作用(抗氧化活性)[J]. 山东大学学报(医学版), 2003, 30(1): 36-38. WANG Ziying, ZHANG Xiumei, WEI Xinbing, et al. Protective effects of compound N-2035 on focal brain ischemia-reperfusion injury in rats(antioxidant sffects)[J].Journal of Shandong University(Health Science), 2003, 30(1): 36-38.
[14] 周鑫堂,王丽莉,韩璐,等. 柿叶化学成分和药理作用研究进展[J]. 中草药, 2014, 151(21): 3195-3203. ZHOU Xintang, WANG Lili, HAN Lu, et al. Research progress on chemical constituents and pharmacological effects of diospyros kaki leaves[J]. Chinese Traditional and Herbal Drugs, 2014, 151(21): 3195-3203.
[15] 刘少静,赵旭,张颖,等. 柿叶中总黄酮的提取和纯化工艺优化及鲜、干柿叶中总黄酮的含量比较[J]. 中国药房, 2015, 32(25): 3572-3575. LIU Shaojing, ZHAO Xu, ZHANG Ying, et al. Optimization of the extraction and purification technologies of total flavonoids from diospyros kaki thunb. leaves and comparison of the contents of total flavonoids in fresh and dried Diospyros kaki thunb. leaves[J]. Chinese pharmacy, 2015, 32(25): 3572-3575.
[16] Bei W, Peng W, Ma Y, et al. Flavonoids from the leaves of diospyros kaki reduce hydrogen peroxide-induced injury of NG108-15 cells[J]. Life Sci, 2005, 76(17): 1975-1988.
[17] Fernando G, Yamila R, Cesar GJ, et al. Neuroprotective effects of neuroEPO using an in vitro model of stroke[J]. Behav Sci(Basel), 2018, 8(2): E26. doi: 10.3390/bs8020026.
[18] Yan YF, Yang WJ, Xu Q, et al. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway[J]. Mol Med Rep, 2015, 12(3): 4734-4742.
[19] Li W, Jiang N, Li B, et al. Antioxidant activity of purified ulvan in hyperlipidemic mice[J]. Int J Biol Macromol, 2018, 113: 971-975. doi: 10.1016/j.ijbiomac.2018.02.104.
[20] Polat N, Ozer MA, Parlakpinar H, et al. Effects of molsidomine on retinal ischemia/reperfusion injury in rabbits[J]. Biotech Histochem, 2018: 1-10. doi: 10.1080/10520295.2017.1406616.
[21] Danilovic D, Mello ES, Frazzato E, et al. Oncogenic mutations in keap1 disturbing inhibitory Nrf2-keap1 interaction: activation of antioxidative pathway in papillary thyroid carcinoma[J]. Head Neck, 2018. doi: 10.1002/hed.25105.
[22] Li S, Song Z, Liu T, et al. Polysaccharide from ostrea rivularis attenuates reproductive oxidative stress damage via activating Keap1-Nrf2/ARE pathway[J]. Carbohydr Polym, 2018, 186:321-331. doi: 10.1016/j.carbpol.2018.01.075.
[23] Tang J, Jia X, Gao N, et al. Role of the Nrf2-ARE pathway in perfluorooctanoic acid(PFOA)-induced hepatotoxicity in rana nigromaculata[J]. Environ Pollut, 2018. doi: 10.1016/j.envpol.2018.02.037.
[24] Roh T, De U, Lim SK, et al. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury[J]. Food Chem Toxicol, 2018, 114: 11-22. doi: 10.1016/j.fct.2018.02.017.
[25] Seo JY, Pyo E, An JP, et al. Andrographolide activates Keap1/Nrf2/ARE/HO-1 pathway in HT22 cells and suppresses microglial activation by Aβ1-42 through Nrf2-related inflammatory response[J]. Mediators Inflamm, 2017: 5906189. doi: 10.1155/2017/5906189.
[26] Wang Z, Ji C, Wu L, et al. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway[J]. PLoS One, 2014, 9(5): e97685. doi: 10.1371/journal.pone.0097685.
[1] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[2] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[3] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[4] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[5] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[6] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[7] 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154.
[8] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[9] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[10] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[11] 罗慧臣,胡丹慧,张济. miR-203-3p靶向TREM1基因调控TGF-β1/p38MAPK信号通路对狼疮性肾炎小鼠肾小管上皮细胞增殖和凋亡的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 18-25.
[12] 洪甲庚,聂洋洋,苏国强. 丙泊酚对结肠癌细胞增殖、迁移及Wnt1和β-catenin表达的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 53-58.
[13] 何鹏娟,颜磊,范明君,刘祥斌,赵兴波. 辛伐他汀对TGF-β诱导的卵巢癌上皮间质转化的影响[J]. 山东大学学报 (医学版), 2018, 56(5): 46-51.
[14] 张华,代燕丽,张佳伟. 原始卵泡的激活与临床应用[J]. 山东大学学报 (医学版), 2018, 56(4): 8-17.
[15] 杨飞龙,周尊林,任巨超,闫磊,刘海南, 张温花,俞能旺,李大伟,徐忠华. 肝癌衍生生长因子对前列腺癌细胞增殖的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(1): 62-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!