您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (4): 8-17.doi: 10.6040/j.issn.1671-7554.0.2018.019

• • 上一篇    

原始卵泡的激活与临床应用

张华,代燕丽,张佳伟   

  1. 农业生物技术国家重点实验室, 中国农业大学生物学院, 北京 100193
  • 发布日期:2022-09-27
  • 通讯作者: 张华. E-mail:huazhang@cau.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFC1001100);国家自然科学基金委面上项目(31571542)

Activation and clinical application of mammalian primordial follicles

ZHANG Hua, DAI Yanli, ZHANG Jiawei   

  1. State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China)〓山〓东〓大〓学〓学〓报〓(医〓学〓版)56卷4期〓-张华, 等.原始卵泡的激活与临床应用〓\=-
  • Published:2022-09-27

摘要: 哺乳动物的卵巢中,卵母细胞发生与发育的基本功能单位为卵泡。与雄性动物睾丸终生含有生殖干细胞不同,雌性哺乳动物的卵泡储备是有限并在成年期不可更新的。在大多数哺乳动物物种中,出生前后会建立一个被称为原始卵泡库的生殖储备库,是哺乳动物一生惟一的生殖资源。而在原始卵泡形成后即进入休眠状态,随后只有少部分被逐渐地选择性激活,并参与到繁衍下一代的过程中。由于休眠的原始卵泡是雌性卵巢中卵泡的贮藏形式,因而原始卵泡的最初形成数量直接决定着雌性哺乳动物的生育力。同时,原始卵泡休眠与激活之间的平衡更直接决定了雌性哺乳动物的生育寿命。近年随着基因修饰动物的不断开发,人们对原始卵泡形成与激活发育的内在调控机制的认识有了长足的进步。随着对于原始卵泡激活调控分子机制的不断揭示,目前利用休眠原始卵泡技术治疗不孕不育在临床中逐渐走向了现实。

关键词: 原始卵泡, 卵泡激活, 卵泡休眠, 信号通路, 体外激活

Abstract: Mammalian ovaries consist of follicles as basic functional units of female reproduction. Unlike the stem cells contained in male testes, the follicle reserve is finite and un-renewable in adult life. In most mammalian species, primordial follicle pool established in early life determines the length of female reproductive lifespan. Most primordial follicles stay dormant after formation and only a limited number of primordial follicles are progressively recruited into growing pool through a process called follicle activation. Therefore, the number of primordial follicles in the ovary directly determines the fecundity of female, and the balance between dormancy and activation of primordial follicles maintains a proper reproductive lifespan in organisms. With the advances of genetically modified mouse models, the mechanisms of the formation and activation of primordial follicles have been revealed. Moreover, the in-depth understanding of the cellular and molecular mechanisms of primordial follicle activation lead to more efficient approaches to treat female infertility. In this review, the current state of studies and clinical applications of primordial follicles have been summarized.

Key words: Primordial follicle, Follicle activation, Follicle dormancy, Signaling pathway, In vitro activation

中图分类号: 

  • R321.1
[1] Morohaku K, Hirao Y, Obata Y. Development of fertile mouse oocytes from mitotic germ cells in vitro[J]. Nat Protoc, 2017, 12(9): 1817-1829.
[2] Maheshwari A, Fowler PA. Primordial follicular assembly in humans-revisited[J]. Zygote, 2008, 16(4): 285-296.
[3] Grive KJ, Freiman RN. The developmental origins of the mammalian ovarian reserve[J]. Dev, 2015, 142(15): 2554-2563.
[4] Peters H. The development of the mouse ovary from birth to maturity[J]. Acta Endocrinol, 1969, 62(1): 98-116.
[5] Zhang H, Risal S, Gorre N, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice[J]. Curr Biol, 2014, 24(21): 2501-2508.
[6] Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles[J]. Hum Mol Genet, 2010, 19(3): 397-410.
[7] John GB, Shirley LJ, Gallardo TD, et al. Specificity of the requirement for Foxo3 in primordial follicle activation[J]. Reprod, 2007, 133(5): 855-863.
[8] Reddy P, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool[J]. Science, 2008, 319(5863): 611-613.
[9] Lechowska A, Bilinski S, Choi Y, et al. Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown[J]. J Assist Reprod Genet, 2011, 28(7): 583-589.
[10] Pangas SA, Choi Y, Ballow DJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8[J]. Proc Natl Acad Sci U S A, 2006, 103(21): 8090-8095.
[11] Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression[J]. Biol of Reprod, 2008, 79(6): 1176-1182.
[12] Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a[J]. Science, 2003, 301(5630): 215-218.
[13] Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance[J]. Development, 2004, 131(4): 933-942.
[14] Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition[J]. Mol Cell Endocrinol, 2004, 214(1-2): 19-25.
[15] Kovanci E, Rohozinski J, Simpson JL, et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure[J]. Fertil Steril, 2007, 87(1): 143-146.
[16] Cavallari DCF, Coelho CMH, Verde LCL. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility-A review[J]. Asian-Australas J Anim Sci, 2016, 29(8): 1065-1074.
[17] Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles[J]. Hum Mol Genet, 2010, 19(3): 397-410.
[18] Adhikari D, Flohr G, Gorre N, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles[J]. Mol Hum Reprod, 2009, 15(12): 765-770.
[19] Jiang ZZ, Hu MW, Ma XS, et al. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool[J]. Oncotarget, 2016, 7(5): 5738-5753.
[20] Ren Y, Suzuki H, Jagarlamudi K, et al. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis[J]. BMC Biol, 2015, 13: 39.
[21] Choi Y, Ballow DJ, Xin Y, et al. Lim Homeobox Gene, Lhx8, is essential for mouse oocyte differentiation and survival[J]. Biol Reprod, 2008, 79(3): 442-449.
[22] Zhang H, Liu K. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood[J]. Hum Reprod Update, 2015, 21(6):779-786.
[23] Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484.
[24] Laplante M, Sabattini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(20):3589-3594.
[25] Motro B, Bernstein A. Dynamic changes in ovarian c-kit and Steel expression during the estrous reproductive cycle[J]. Dev Dyn, 1993, 197(1): 69-79.
[26] Jagarlamudi K, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation[J]. PLoS One, 2009, 4(7): 6186. doi:10.1371/journal.pone.0006186.
[27] Kaldis P. Another piece of the p27Kip1 puzzle[J]. Cell, 2007, 128(2): 241-244.
[28] Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice[J]. Cell, 1996, 85(5): 733-744.
[29] Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1)display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors[J]. Cell, 1996, 85(5): 707-720.
[30] Rajareddy S, Reddy P, Du C, et al. p27kip1(cyclin-dependent kinase inhibitor 1B)controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice[J]. Mol endocrinol, 2007, 21(9): 2189-2202.
[31] Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles[J]. Endocr Rev, 2009, 30(5): 438-464.
[32] Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression[J]. Oncogene, 2008, 27(55): 6908-6919.
[33] Hemminki A, Avizienyte E, Roth S, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome[J]. Duodecim, 1998, 114(7): 667-668.
[34] Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression[J]. Nat Rev Cancer, 2009, 9(8): 563-575.
[35] Lu X, Guo S, Cheng Y, et al. Stimulation of ovarian follicle growth after AMPK inhibition[J]. Reproduction, 2017, 153(5): 683-694.
[36] Ballow DJ, Xin Y, Choi Y, et al. Sohlh2 is a germ cell-specific bHLH transcription factor[J]. Gene Expr Patterns, 2006, 6(8): 1014-1018.
[37] Pangas SA, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters[J]. Hum Reprod Update, 2006, 12(1): 65-76.
[38] Toyoda S, Miyazaki T, Miyazaki S, et al. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia[J]. Dev Biol, 2009, 325(1): 238-248.
[39] Kitanaka J, Takemura M, Matsumoto K, et al. Structure and chromosomal localization of a murine LIM/homeobox gene, Lhx8[J]. Genomics, 1998, 49(2): 307-309.
[40] Mazaud S, Oréal E, Guigon CJ, et al. Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation[J]. Gene Expr Patterns, 2002, 2(3-4): 373-377.
[41] Qin Y, Zhao H, Kovanci E, et al. LHX8 mutation analysis in premature ovarian failure[J]. Fertil Steril, 2008, 89(4): 1012-1014.
[42] Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression[J]. Science, 2004, 305(5687): 1157-1159.
[43] Choi Y, Qin Y, Berger MF, et al. Microarray analyses of newborn mouse ovaries lacking Nobox[J]. Biol of Reprod, 2007, 77(2): 312-319.
[44] Liu L, Rajareddy S, Reddy P, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a[J]. Development, 2007, 134(1): 199-209.
[45] John GB, Gallardo TD, Shirley LJ, et al. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth[J]. Dev Biol, 2008, 321(1):197-204.
[46] Oley C, Baraitser M. Blepharophimosis, ptosis, epicanthus inversus syndrome(BPES syndrome)[J]. J Med Genet, 1988, 25(1): 47-51.
[47] Ottolenghi C, Omari S, Garciaortiz JE, et al. Foxl2 is required for commitment to ovary differentiation[J]. Hum Mol Genet, 2005, 14(14): 2053-2062.
[48] Uda M, Ottolenghi C, Crisponi L, et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development[J]. Hum Mol Genet, 2004, 13(11): 1171-1181.
[49] Reddy P, Adhikari D, Zheng W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles[J]. Hum Mol Genet, 2009, 18(15): 2813-2824.
[50] Yu C, Zhang YL, Pan WW, et al. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins[J]. Science, 2013, 342(6165): 1518-1521.
[51] Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis[J]. Mol Cell Endocrinol, 2001, 175(1-2): 123-130.
[52] Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary[J]. Endocrinology, 2002, 143(3): 1076-1084.
[53] Buratini J, Price CA. Follicular somatic cell factors and follicle development[J]. Reprod Fertil Dev, 2011, 23(1): 32-39.
[54] Henderson SA, Edwards RG. Chiasma frequency and maternal age in mammals[J]. Nature, 1968, 218(5136): 22-28.
[55] Byskov AG, Guoliang X, Andersen CY. The cortex-medulla oocyte growth pattern is organized during fetal life: an in-vitro study of the mouse ovary[J]. Mol Hum Reprod, 1997, 3(9): 795-800.
[56] Zheng W, Zhang H, Gorre N, et al. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions[J]. Hum Mol Genet, 2014, 23(4): 920-928.
[57] Zheng W, Zhang H, Liu K. The two classes of primordial follicles in the mouse ovary: their development, physiological functions and implications for future research[J]. Mol Hum Reprod, 2014, 20(4): 286-296.
[58] Broekmans FJ, Knauff EA, Valkenburg O, et al. PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors[J]. BJOG, 2006, 113(10): 1210-1217.
[59] Qin Y, Jiao X, Simpson JL, et al. Genetics of primary ovarian insufficiency: new developments and opportunities[J]. Hum Reprod Update, 2015, 21(6): 787-808.
[60] Li J, Kawamura K, Cheng Y, et al. Activation of dormant ovarian follicles to generate mature eggs[J]. Proc Natl Acad Sci U S A, 2010, 107(22): 10280-10284.
[61] Taga M, Mouton-Liger F, Paquet C, et al. Modulation of oxidative stress and tau phosphorylation by the mTOR activator phosphatidic acid in SH-SY5Y cells[J]. Febs Letters, 2011, 585(12): 1801-1806.
[62] Frondorf K, Henkels KM, Frohman MA, et al. Phosphatidic acid is a leukocyte chemoattractant that acts through S6 kinase signaling[J]. J Biol Chem, 2010, 285(21): 15837-15847.
[63] Hornberger TA, Chu WK, Mak YW, et al. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle[J]. Proc Natl Acad Sci U S A, 2006, 103(12): 4741-4746.
[64] Xinhui S, Yiping S, Yuanlin H, et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14(5): 721-731.
[65] Farquhar C, Lilford RJ, Marjoribanks J, et al. Laparoscopic "drilling" by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome[J]. Cochrane Database Syst Rev, 2005, 3(3): 1122.
[66] Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment[J]. Proc Natl Acad Sci U S A, 2013, 110(43): 17474-17479.
[67] Pan D. Hippo signaling in organ size control[J]. Gene Dev, 2007, 21(8): 886-897.
[68] Halder G, Johnson RL. Hippo signaling: growth control and beyond[J]. Development, 2011, 138(1): 9-22.
[69] Hergovich A. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions[J]. Biochem Soc Trans, 2012, 40(1): 124-128.
[70] Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment[J]. Nat Rev Drug Discov, 2014, 13(1): 63-79.
[71] Wada K, Itoga K, Okano T, et al. Hippo pathway regulation by cell morphology and stress fibers[J]. Development, 2011, 138(18): 3907-3914.
[72] Cheng Y, Feng Y, Jansson L, et al. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP[J]. FASEB J, 2015, 29(6): 2423-2430.
[73] Hikabe O, Hamazaki N, Nagamatsu G, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature, 2016, 539(7628): 299-303.
[1] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[2] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[3] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[4] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[5] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[6] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[7] 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154.
[8] 张倩,秦明明,何学佳,蔡秋景,张亚民,李庆苏,朱薇薇. 骨化三醇对哮喘中TGF-β1所诱导上皮间充质转化的调控作用[J]. 山东大学学报 (医学版), 2021, 59(7): 10-18.
[9] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[10] 罗慧臣,胡丹慧,张济. miR-203-3p靶向TREM1基因调控TGF-β1/p38MAPK信号通路对狼疮性肾炎小鼠肾小管上皮细胞增殖和凋亡的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 18-25.
[11] 洪甲庚,聂洋洋,苏国强. 丙泊酚对结肠癌细胞增殖、迁移及Wnt1和β-catenin表达的影响[J]. 山东大学学报 (医学版), 2020, 58(11): 53-58.
[12] 杨飞龙,周尊林,任巨超,闫磊,刘海南, 张温花,俞能旺,李大伟,徐忠华. 肝癌衍生生长因子对前列腺癌细胞增殖的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(1): 62-69.
[13] 邓轲,刘毅,盖中涛. 间充质干细胞对肠道病毒71型的易感性及miRNA的差异表达[J]. 山东大学学报(医学版), 2017, 55(3): 25-31.
[14] 郭贺贺,孙志强,刘艳娟,刘奕晨,李广,郑方. 去甲斑蝥素对骨髓瘤U266细胞Notch信号通路表达的影响[J]. 山东大学学报(医学版), 2017, 55(3): 32-37.
[15] 李健,徐冰,闫新峰,徐万菊,常晓天. 筛选TXNDC5与胰岛素相关信号通路关键基因的探讨[J]. 山东大学学报(医学版), 2017, 55(3): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!