您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (6): 1-9.doi: 10.6040/j.issn.1671-7554.0.2021.1359

• 基础医学 •    

LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制

刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤   

  • 发布日期:2022-06-17
  • 通讯作者: 张曼. E-mail:zhangm0046@163.com
  • 基金资助:
    沈阳市科学技术计划项目(20-205-4-031);辽宁省教育厅2020年度科学研究经费项目(SYYX202010);辽宁省普通本科高等学校校际合作项目(协同创新)(重大科研项目第185)

LncRNA-HOTAIR regulates migration of macrophages via H3K27me3 pathway

LIU Yan, ZHANG Man, JIANG Chaoyang, BIAN Shu, DU Aijia, CHEN He   

  1. Department of Cardiology, Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning, China
  • Published:2022-06-17

摘要: 目的 观察HOX转录反义RNA(LncRNA-HOTAIR)和组蛋白H3第27位赖氨酸三甲基化(H3K27me3)在氧化低密度脂蛋白(oxLDL)暴露的巨噬细胞模型中的表达,并在基因表观遗传学水平上探讨HOTAIR调控H3K27me3对巨噬细胞迁移的具体机制。 方法 体外培养RAW264.7巨噬细胞,以 oxLDL暴露巨噬细胞制备模型。将细胞分为对照组(A组)、oxLDL组(B组)、巨噬细胞+组蛋白去甲基化酶抑制剂GSKJ4 +oxLDL组(C组)、巨噬细胞+组蛋白甲基化酶抑制剂GSK126+oxLDL组(D组)、巨噬细胞+oe-HOTAIR+oxLDL组(E组)、巨噬细胞+pcDNA+oxLDL组(F组)、巨噬细胞+oe-HOTAIR +GSKJ4+oxLDL组(G组)、巨噬细胞+pcDNA+GSKJ4+oxLDL组(H组)、巨噬细胞+ oe-HOTAIR+GSK126+oxLDL组(Ⅰ组)、巨噬细胞+pcDNA+GSK126+oxLDL组(J组)。采用Western blotting法分别检测各组细胞中H3K27me3、肿瘤坏死因子-α(TNF-α)蛋白的表达,采用qPCR法检测各组细胞中HOTAIR表达,采用Transwell法检测各组细胞中巨噬细胞迁移能力。 结果 (1)与A组相比,B组TNF-α的表达和巨噬细胞迁移增加,HOTAIR 和H3K27me3表达降低,且两者呈正相关(P<0.01)。(2)与B组相比,C组H3K27me3表达增加,TNF-α表达降低,巨噬细胞迁移减少(P<0.01),HOTAIR表达无明显变化(P>0.05);与B组相比,D组H3K27me3表达降低,TNF-α表达和巨噬细胞迁移增加(P<0.01),HOTAIR表达无明显变化(P>0.05)。(3)与B组相比,E组HOTAIR、H3K27me3表达增加,TNF-α表达降低,巨噬细胞迁移减少(P<0.01);与B组相比,F组HOTAIR、H3K27me3、TNF-α的表达和巨噬细胞迁移均无明显变化(P>0.05)。(4)与E组相比,G组HOTAIR表达无明显变化(P>0.05),H3K27me3表达增加,TNF-α表达降低,巨噬细胞迁移减少(P<0.01);与G组相比,H组HOTAIR和H3K27me3表达降低,TNF-α表达和巨噬细胞迁移增加(P<0.01);与E组相比,Ⅰ组HOTAIR的表达无明显变化(P>0.05),H3K27me3表达降低,TNF-α的表达和巨噬细胞迁移增加(P<0.01);与Ⅰ组相比,J组HOTAIR和H3K27me3表达降低,TNF-α表达和巨噬细胞迁移增加(P<0.01)。 结论 在oxLDL暴露巨噬细胞迁移模型中,H3K27me3表达降低,其经基因表观遗传学影响TNF-α的表达。LncRNA-HOTAIR是与H3K27me3的表达呈正相关的上游调控因子,HOTAIR降低TNF-α表达及巨噬细胞迁移过程可经H3K27me3途径。

关键词: 基因表观遗传学, 组蛋白, 甲基化修饰, HOTAIR, 炎症

Abstract: Objective To explore the expressions of HOX transcribed antisense RNA(LncRNA-HOTAIR)and histone H3 lysine trimethylation at position 27(H3K27me3)in a macrophage model exposed to oxidized low density lipoprotein(oxLDL), and to explore the specific mechanism of HOTAIR regulating H3K27me3 on macrophage migration at the level of gene epigenetics. Methods RAW264.7 macrophages were cultured in vitro, and exposed to oxLDL to prepare the model. The cells were then divided into control group(group A), oxLDL group(group B), macrophage+histone demethylase inhibitor GSKJ4+oxLDL group(group C), macrophage+ histone A GSK126 + oxLDL group(group D), macrophage+oe-HOTAIR+oxLDL group(group E), macrophage+pcDNA+oxLDL group(group F), macrophage+oe-HOTAIR+GSKJ4+oxLDL group(group G), macrophage + pcDNA + GSKJ4 + oxLDL group(group H), macrophage + oe-HOTAIR + GSK126 + oxLDL group(group I), and macrophage + pcDNA + GSK126 + oxLDL group(group J). The protein expressions of H3K27me3 and tumor necrosis factor-α(TNF-α)were detected with Western blotting; the expression of HOTAIR was detected with qPCR, and the migration ability was determined with Transwell assay. Results (1)Compared with group A, group B had increased TNF-α expression and migration ability, but decreased HOTAIR and H3K27me3 expressions, which were positively correlated(P<0.01). (2) Compared with group B, group C had increased H3K27me3 expression, decreased TNF-α expression and migration ability (P<0.01), but the HOTAIR expression did not change significantly(P>0.05); compared with group B, group D had decreased H3K27me3 expression, increased TNF-α expression and migration ability(P<0.01), but the HOTAIR expression did not change significantly(P>0.05). (3) Compared with group B, group E had increased HOTAIR and H3K27me3 expressions, but decreased TNF-α expression and migration ability(P<0.01); compared with group B, group F had not significantly changed HOTAIR, H3K27me3 and TNF-α expressions, and migration ability(P>0.05). (4) Compared with group E, group G had unchanged HOTAIR expression(P>0.05), increased H3K27me3 expression, but decreased TNF-α expression and migration ability(P<0.01); compared with group E, group I had unchanged HOTAIR expression(P>0.05), decreased H3K27me3 expression, but increased TNF-α expression and migration ability(P<0.01). Conclusion In the oxLDL-exposed macrophage migration model, the expression of H3K27me3 is reduced, which affects the expression of TNF-α. LncRNA-HOTAIR is an upstream regulatory factor positively related to the expression of H3K27me3. HOTAIR reduces the expression of TNF-α and migration of macrophages via the H3K27me3 pathway.

Key words: Gene epigenetics, Histones, Methylation modification, HOTAIR, Inflammation

中图分类号: 

  • R543.5
[1] Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications of gene expression by lifestyle and environment [J]. Arch Pharm Res, 2017, 40(11): 1219-1237.
[2] Yan Q, Sun L, Zhu Z, et al. Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages [J]. Cellular Signalling, 2014, 26(9): 1783-1791.
[3] 王深明, 吴伟滨. 重视动脉粥样硬化相关发病机制的研究[J]. 中华血管外科杂志, 2017, 2(4): 197-200.
[4] Tabas Ira, García-Cardeña Guillermo, Owens Gary K. Recent insights into the cellular biology of atherosclerosis [J]. The Journal of cell biology, 2015, 209(1): 13-22.
[5] Zawadzka M, Jagodzifiski PP. Exercise-induced epigenetic regulations in inflammatory related cells [J]. J Appl Biomed, 2016, 15(1): 63-70.
[6] Xu S, Pelisek J, Jin ZG. Atherosclerosis is an epigenetic disease [J]. Trends Endocrinol Metab, 2018, 29(11): 739-742.
[7] Nicorescu I, Dallinga GM, Winther M, et al. Potential epigenetic therapeutics for atherosclerosis treatment [J]. Atherosclerosis, 2019, 281(12): 189-197.
[8] McCabe, Michael T, Mohammad, et al. Targeting histone methylation in cancer [J]. Cancer Journal, 2017, 23(5): 292.
[9] Zhao Z, Su Z, Liang P, et al. USP38 couples histone ubiquitination and methylation via KDM5B to resolve inflammation [J]. Advanced Science, 2020, 7(22): 2002680.
[10] Jiang W, Devendra A, Chandra B. Cell specific histone modifications in atherosclerosis(Review)[J]. Molecular Medicine Reports, 2018, 18(2): 1215-1224.
[11] Yamashita S, Nanjo S, Rehnberg E, et al. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori [J]. Clinical Epigenetics, 2019, 11(1): 191.
[12] Senmatsu S, Hirota K. Roles of lncRNA transcription as a novel regulator of chromosomal function [J]. Genes Genet Syst, 2021, 95(5): 213-223.
[13] Guo C. Gene regulation by long non-coding RNAs and its biological functions [J]. Nature Reviews Molecular Cell Biology, 2020, 22(2): 96-118.
[14] Zhang L, Cheng H, Yue Y, et al. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1 [J]. Cardiovasc Pathol, 2018, 33: 6-15. doi: 10.1016/j.carpath.2017.11.004.
[15] Momtazmanesh S, Rezaei N. Long non-coding RNAs in diagnosis, treatment, prognosis, and progression of glioma: a State-of-the-Art Review [J]. Front Oncol, 2021, 11: 712786. doi: 10.3389/fonc.2021.712786.
[16] 范方田, 沈存思, 裴昌松, 等. 肿瘤转移新靶点HOTAIR的研究进展[J]. 肿瘤, 2012, 32(10): 842-846. FAN Fangtian, SHEN Cunsi, PEI Changsong, et al. Review of a new tumor metastatic target HOTAIR [J]. Tumor, 2012, 32(10): 842-846.
[17] Yuan S, Zhang C, Zhu Y, et al. Neohesperid in ameliorates steroid induced osteonecrosis of the femoral head by inhibiting the histone modification of lncRNA HOTAIR [J]. Drug Des Devel Ther, 2020, 7(14): 5419-5430.
[18] Xu S, Kamato D, Little PJ, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics [J]. Pharmacol Ther, 2019, 196: 15-43. doi: 10.1016/j.pharmthera.2018.11.003.
[19] Poznyak AV, Nikiforov NG, Markin AM, et al. Overview of oxLDL and Its impact on cardiovascular health: focus on atherosclerosis [J]. Front Pharmacol, 2020, 11: 613780. doi: 10.3389/fphar.2020.613780.
[20] Lamb FS, Choi H, Miller MR, et al. TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis [J]. Am J Hypertens, 2020, 33(10): 902-913.
[21] Xue Y, Guo Y, Luo S, et al. Aberrantly methylated-differentially expressed genes identify novel atherosclerosis risk subtypes [J]. Front Genet, 2020, 11: 569572. doi: 10.3389/fgene.2020.569572.
[22] Zaret KS. Pioneer transcription factors initiating gene network changes [J]. A Annu Rev Genet, 2020, 54(1): 367-385.
[23] Peng Z, Wu X, Li G, et al. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: a systematic review and meta-analysis [J]. Medicine, 2017, 96(14): e6569.
[24] Hyun K, Jeon J, Park K, et al. Writing, erasing and reading histone lysine methylations [J]. Exp Mol Med, 2017, 49(4): e324.
[25] Alam H, Gu B, Min GL. Histone methylation modifiers in cellular signaling pathways [J]. Cell Mol Life Sci, 2015, 72(23): 4577-4592.
[26] Bekkering S, Quintin J, Joosten L, et al. Oxidized low density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes significance [J]. Arterioscler Thromb Vasc Biol, 2014, 34(8): 1731-1738.
[27] Wierda RJ, Rietveld IM, Eggermond MV, et al. Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques [J]. Life Sciences, 2015, 129: 3-9. doi: 10.1016/j.lfs.2014.10.010.
[28] 易欣, 蒋学俊, 周易. 组蛋白甲基化修饰在动脉粥样硬化发生发展中的研究进展[J].中国心血管病研究, 2018, 16(8): 676-679.
[29] Zheng QF, Wang HM, Wang ZF, et al. Reprogramming of histone methylation controls the differentiation of monocytes into macrophages [J]. 2017, 284(9): 1309-1323.
[30] Xia M, Yao L, Zhang Q, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3 [J]. Oncotarget, 2017, 8(12): 19795-19802.
[31] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis [J]. Nature, 2010, 464(7291): 1071-1076.
[32] Fang S, Shen Y, Chen B, et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR [J]. Ann Transl Med, 2018, 6(22): 440.
[33] Pang JL, Wang JW, Hu PY, et al. HOTAIR alleviates ox-LDL-induced inflammatory response in Raw264.7 cells via inhibiting NF-κB pathway [J]. Eur Rev Med Pharmacol Sci, 2018, 22(20): 6991-6998.
[34] Peng Y, Kai M, Jiang L, et al. Thymic stromal lymphopoietin induced HOTAIR activation promotes endothelial cell proliferation and migration in atherosclerosis [J]. Bioscience Reports, 2017, 37(4): BSR20170351.
[35] 卞姝, 张曼, 刘岩, 等. 环脂蛋白20调控组蛋白H2B泛素化经NF-κB信号通路对巨噬细胞迁移的影响[J]. 山东医药, 2022, 62(10): 60-63. BIAN Shu, ZHANG Man, LIU Yan, et al. Effect of cyclic finger protein 20 regulating histone H2B ubiquitination on macrophage migration through NF-κB pathway[J]. Shandong Medical Journal, 2022, 62(10): 60-63.
[36] Esteller M. Epigenetics in cancer [J]. Carcinogenesis, 2010, 31(1): 27-36.
[1] 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98.
[2] 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72.
[3] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[4] 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81.
[5] 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122.
[6] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[7] 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报 (医学版), 2021, 59(9): 30-36.
[8] 王凤霞,王涛,刘晓. 格氏乳球菌致急性结石性胆囊炎1例[J]. 山东大学学报 (医学版), 2021, 59(6): 122-124.
[9] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[10] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[11] 邢志群,李德军,赵宝,许春阳,纪洪生. 45例老年患者术后谵妄与乙酰胆碱酯酶活性及炎症指标关联性[J]. 山东大学学报 (医学版), 2021, 59(3): 92-97.
[12] 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7.
[13] 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 75-79.
[14] 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21.
[15] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!