山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (6): 1-9.doi: 10.6040/j.issn.1671-7554.0.2021.1359
• 基础医学 •
刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤
LIU Yan, ZHANG Man, JIANG Chaoyang, BIAN Shu, DU Aijia, CHEN He
摘要: 目的 观察HOX转录反义RNA(LncRNA-HOTAIR)和组蛋白H3第27位赖氨酸三甲基化(H3K27me3)在氧化低密度脂蛋白(oxLDL)暴露的巨噬细胞模型中的表达,并在基因表观遗传学水平上探讨HOTAIR调控H3K27me3对巨噬细胞迁移的具体机制。 方法 体外培养RAW264.7巨噬细胞,以 oxLDL暴露巨噬细胞制备模型。将细胞分为对照组(A组)、oxLDL组(B组)、巨噬细胞+组蛋白去甲基化酶抑制剂GSKJ4 +oxLDL组(C组)、巨噬细胞+组蛋白甲基化酶抑制剂GSK126+oxLDL组(D组)、巨噬细胞+oe-HOTAIR+oxLDL组(E组)、巨噬细胞+pcDNA+oxLDL组(F组)、巨噬细胞+oe-HOTAIR +GSKJ4+oxLDL组(G组)、巨噬细胞+pcDNA+GSKJ4+oxLDL组(H组)、巨噬细胞+ oe-HOTAIR+GSK126+oxLDL组(Ⅰ组)、巨噬细胞+pcDNA+GSK126+oxLDL组(J组)。采用Western blotting法分别检测各组细胞中H3K27me3、肿瘤坏死因子-α(TNF-α)蛋白的表达,采用qPCR法检测各组细胞中HOTAIR表达,采用Transwell法检测各组细胞中巨噬细胞迁移能力。 结果 (1)与A组相比,B组TNF-α的表达和巨噬细胞迁移增加,HOTAIR 和H3K27me3表达降低,且两者呈正相关(P<0.01)。(2)与B组相比,C组H3K27me3表达增加,TNF-α表达降低,巨噬细胞迁移减少(P<0.01),HOTAIR表达无明显变化(P>0.05);与B组相比,D组H3K27me3表达降低,TNF-α表达和巨噬细胞迁移增加(P<0.01),HOTAIR表达无明显变化(P>0.05)。(3)与B组相比,E组HOTAIR、H3K27me3表达增加,TNF-α表达降低,巨噬细胞迁移减少(P<0.01);与B组相比,F组HOTAIR、H3K27me3、TNF-α的表达和巨噬细胞迁移均无明显变化(P>0.05)。(4)与E组相比,G组HOTAIR表达无明显变化(P>0.05),H3K27me3表达增加,TNF-α表达降低,巨噬细胞迁移减少(P<0.01);与G组相比,H组HOTAIR和H3K27me3表达降低,TNF-α表达和巨噬细胞迁移增加(P<0.01);与E组相比,Ⅰ组HOTAIR的表达无明显变化(P>0.05),H3K27me3表达降低,TNF-α的表达和巨噬细胞迁移增加(P<0.01);与Ⅰ组相比,J组HOTAIR和H3K27me3表达降低,TNF-α表达和巨噬细胞迁移增加(P<0.01)。 结论 在oxLDL暴露巨噬细胞迁移模型中,H3K27me3表达降低,其经基因表观遗传学影响TNF-α的表达。LncRNA-HOTAIR是与H3K27me3的表达呈正相关的上游调控因子,HOTAIR降低TNF-α表达及巨噬细胞迁移过程可经H3K27me3途径。
中图分类号:
[1] Abdul QA, Yu BP, Chung HY, et al. Epigenetic modifications of gene expression by lifestyle and environment [J]. Arch Pharm Res, 2017, 40(11): 1219-1237. [2] Yan Q, Sun L, Zhu Z, et al. Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages [J]. Cellular Signalling, 2014, 26(9): 1783-1791. [3] 王深明, 吴伟滨. 重视动脉粥样硬化相关发病机制的研究[J]. 中华血管外科杂志, 2017, 2(4): 197-200. [4] Tabas Ira, García-Cardeña Guillermo, Owens Gary K. Recent insights into the cellular biology of atherosclerosis [J]. The Journal of cell biology, 2015, 209(1): 13-22. [5] Zawadzka M, Jagodzifiski PP. Exercise-induced epigenetic regulations in inflammatory related cells [J]. J Appl Biomed, 2016, 15(1): 63-70. [6] Xu S, Pelisek J, Jin ZG. Atherosclerosis is an epigenetic disease [J]. Trends Endocrinol Metab, 2018, 29(11): 739-742. [7] Nicorescu I, Dallinga GM, Winther M, et al. Potential epigenetic therapeutics for atherosclerosis treatment [J]. Atherosclerosis, 2019, 281(12): 189-197. [8] McCabe, Michael T, Mohammad, et al. Targeting histone methylation in cancer [J]. Cancer Journal, 2017, 23(5): 292. [9] Zhao Z, Su Z, Liang P, et al. USP38 couples histone ubiquitination and methylation via KDM5B to resolve inflammation [J]. Advanced Science, 2020, 7(22): 2002680. [10] Jiang W, Devendra A, Chandra B. Cell specific histone modifications in atherosclerosis(Review)[J]. Molecular Medicine Reports, 2018, 18(2): 1215-1224. [11] Yamashita S, Nanjo S, Rehnberg E, et al. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori [J]. Clinical Epigenetics, 2019, 11(1): 191. [12] Senmatsu S, Hirota K. Roles of lncRNA transcription as a novel regulator of chromosomal function [J]. Genes Genet Syst, 2021, 95(5): 213-223. [13] Guo C. Gene regulation by long non-coding RNAs and its biological functions [J]. Nature Reviews Molecular Cell Biology, 2020, 22(2): 96-118. [14] Zhang L, Cheng H, Yue Y, et al. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1 [J]. Cardiovasc Pathol, 2018, 33: 6-15. doi: 10.1016/j.carpath.2017.11.004. [15] Momtazmanesh S, Rezaei N. Long non-coding RNAs in diagnosis, treatment, prognosis, and progression of glioma: a State-of-the-Art Review [J]. Front Oncol, 2021, 11: 712786. doi: 10.3389/fonc.2021.712786. [16] 范方田, 沈存思, 裴昌松, 等. 肿瘤转移新靶点HOTAIR的研究进展[J]. 肿瘤, 2012, 32(10): 842-846. FAN Fangtian, SHEN Cunsi, PEI Changsong, et al. Review of a new tumor metastatic target HOTAIR [J]. Tumor, 2012, 32(10): 842-846. [17] Yuan S, Zhang C, Zhu Y, et al. Neohesperid in ameliorates steroid induced osteonecrosis of the femoral head by inhibiting the histone modification of lncRNA HOTAIR [J]. Drug Des Devel Ther, 2020, 7(14): 5419-5430. [18] Xu S, Kamato D, Little PJ, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics [J]. Pharmacol Ther, 2019, 196: 15-43. doi: 10.1016/j.pharmthera.2018.11.003. [19] Poznyak AV, Nikiforov NG, Markin AM, et al. Overview of oxLDL and Its impact on cardiovascular health: focus on atherosclerosis [J]. Front Pharmacol, 2020, 11: 613780. doi: 10.3389/fphar.2020.613780. [20] Lamb FS, Choi H, Miller MR, et al. TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis [J]. Am J Hypertens, 2020, 33(10): 902-913. [21] Xue Y, Guo Y, Luo S, et al. Aberrantly methylated-differentially expressed genes identify novel atherosclerosis risk subtypes [J]. Front Genet, 2020, 11: 569572. doi: 10.3389/fgene.2020.569572. [22] Zaret KS. Pioneer transcription factors initiating gene network changes [J]. A Annu Rev Genet, 2020, 54(1): 367-385. [23] Peng Z, Wu X, Li G, et al. Tumor necrosis factor-alpha gene polymorphisms and susceptibility to ischemic heart disease: a systematic review and meta-analysis [J]. Medicine, 2017, 96(14): e6569. [24] Hyun K, Jeon J, Park K, et al. Writing, erasing and reading histone lysine methylations [J]. Exp Mol Med, 2017, 49(4): e324. [25] Alam H, Gu B, Min GL. Histone methylation modifiers in cellular signaling pathways [J]. Cell Mol Life Sci, 2015, 72(23): 4577-4592. [26] Bekkering S, Quintin J, Joosten L, et al. Oxidized low density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes significance [J]. Arterioscler Thromb Vasc Biol, 2014, 34(8): 1731-1738. [27] Wierda RJ, Rietveld IM, Eggermond MV, et al. Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques [J]. Life Sciences, 2015, 129: 3-9. doi: 10.1016/j.lfs.2014.10.010. [28] 易欣, 蒋学俊, 周易. 组蛋白甲基化修饰在动脉粥样硬化发生发展中的研究进展[J].中国心血管病研究, 2018, 16(8): 676-679. [29] Zheng QF, Wang HM, Wang ZF, et al. Reprogramming of histone methylation controls the differentiation of monocytes into macrophages [J]. 2017, 284(9): 1309-1323. [30] Xia M, Yao L, Zhang Q, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3 [J]. Oncotarget, 2017, 8(12): 19795-19802. [31] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis [J]. Nature, 2010, 464(7291): 1071-1076. [32] Fang S, Shen Y, Chen B, et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR [J]. Ann Transl Med, 2018, 6(22): 440. [33] Pang JL, Wang JW, Hu PY, et al. HOTAIR alleviates ox-LDL-induced inflammatory response in Raw264.7 cells via inhibiting NF-κB pathway [J]. Eur Rev Med Pharmacol Sci, 2018, 22(20): 6991-6998. [34] Peng Y, Kai M, Jiang L, et al. Thymic stromal lymphopoietin induced HOTAIR activation promotes endothelial cell proliferation and migration in atherosclerosis [J]. Bioscience Reports, 2017, 37(4): BSR20170351. [35] 卞姝, 张曼, 刘岩, 等. 环脂蛋白20调控组蛋白H2B泛素化经NF-κB信号通路对巨噬细胞迁移的影响[J]. 山东医药, 2022, 62(10): 60-63. BIAN Shu, ZHANG Man, LIU Yan, et al. Effect of cyclic finger protein 20 regulating histone H2B ubiquitination on macrophage migration through NF-κB pathway[J]. Shandong Medical Journal, 2022, 62(10): 60-63. [36] Esteller M. Epigenetics in cancer [J]. Carcinogenesis, 2010, 31(1): 27-36. |
[1] | 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98. |
[2] | 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72. |
[3] | 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7. |
[4] | 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81. |
[5] | 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122. |
[6] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[7] | 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报 (医学版), 2021, 59(9): 30-36. |
[8] | 王凤霞,王涛,刘晓. 格氏乳球菌致急性结石性胆囊炎1例[J]. 山东大学学报 (医学版), 2021, 59(6): 122-124. |
[9] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[10] | 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9. |
[11] | 邢志群,李德军,赵宝,许春阳,纪洪生. 45例老年患者术后谵妄与乙酰胆碱酯酶活性及炎症指标关联性[J]. 山东大学学报 (医学版), 2021, 59(3): 92-97. |
[12] | 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7. |
[13] | 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 75-79. |
[14] | 江勇,宋剑刚,朱大侠,刘礼剑. 柚皮素通过调控巨噬细胞NLRP3炎症小体活化对脓毒症致急性肺损伤的影响[J]. 山东大学学报 (医学版), 2021, 59(1): 14-21. |
[15] | 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14. |
|