山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 35-41.doi: 10.6040/j.issn.1671-7554.0.2020.1753
丁菲,姜洁
DING Fei, JIANG Jie
摘要: 目的 观察不同浓度姜黄素对子宫内膜癌孕激素耐药细胞的影响,探讨相关信号通路在影响子宫内膜癌孕激素耐药中的作用。 方法 采用ETCM、GEPIA数据库分析姜黄素的靶点基因,进而筛选出与子宫内膜癌及耐药相关的基因;测定已建立的子宫内膜癌Ishikawa细胞的孕激素耐药模型(IshikawaPR细胞系)的耐药性,将耐药细胞按不同浓度处理分为姜黄素组(给予0、5、10、20、40、60、80 μmoL姜黄素)、孕激素组(给予0、5、10、20、40、60、90 μmoL孕激素)和姜黄素+孕激素组(同时给予相同浓度的姜黄素和孕激素),采用噻唑蓝溴化四唑(MTT)检测各组细胞的生长;采用5-乙炔基-2'-脱氧尿苷(EdU)、小室穿透实验(Transwell)、线粒体膜电位检测分析姜黄素对子宫内膜癌耐药细胞的影响;数据库分析姜黄素靶向作用的蛋白,采用Western blotting检测不同浓度姜黄素刺激后耐药细胞内蛋白水平的变化,并结合数据库分析潜在的信号通路。 结果 数据库分析结果显示,姜黄素靶点基因与PGR、ESR等肿瘤耐药基因密切相关;MTT结果显示,姜黄素能够抑制耐药细胞生长,导致细胞存活率下降(F=907.8, P<0.001),并且姜黄素和孕激素之间存在交互关系(F=51.34,P=0.004),当孕激素给药浓度分别为10 μmoL(t=16.13,P=0.026)、20 μmoL(t=33.23,P=0.006)、40 μmoL(t=35.94,P =0.005)时,联合姜黄素可较孕激素单药处理使耐药细胞抑制效率更强。姜黄素(0、10、20 μmoL)处理可抑制耐药细胞增殖(F=205.8, P<0.001)、侵袭(F=13.9,P=0.006),促进细胞凋亡(F=23.3,P=0.002);并且耐药细胞中CyclinD1、CASP3、MMP2、磷酸化的核内转录因子蛋白水平下降,孕激素受体表达升高。 结论 姜黄素可抑制子宫内膜癌孕激素抵抗,可能是通过介导转录因子NF-κB 失活实现。
中图分类号:
[1] 吴彧, 夏彦清, 伍玥, 等. 炎性细胞模型中姜黄素对胆固醇逆转运蛋白ABCA1和ABCG1基因的影响 [J]. 山东大学学报(医学版), 2016, 54(11): 24-26. WU Song, XIA Yanqing, WU Yue, et al. Effect of curcumin on ABCA1 and ABCG1 genes in an inflammatory cell model [J]. Journal of Shandong University(Health Sciences), 2016, 54(11): 24-26. [2] Hosseini-Zare M S, Sarhadi M, Zarei M, et al. Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review [J]. Eur J Med Chem, 2021, 210: 113072. doi: 10.1016/j.ejmech.2020.113072. [3] Mukherjee S, Baidoo J N E, Fried A, et al. Using curcumin to turn the innate immune system against cancer [J]. Biochem Pharmacol, 2020, 176: 113824. doi: 10.1016/j.bcp.2020.113824. [4] Gentry-Maharaj A, Karpinskyj C. Current and future approaches to screening for endometrial cancer [J]. Best Pract Res Clin Obstet Gynaecol, 2020, 65:79-97. [5] 沈偲, 滕银成. 子宫内膜癌孕激素耐药机制及新型疗法的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(12): 1677-1682. SHEN Cai, TENG Yincheng. Research progress on the mechanism of progesterone resistance and novel therapy in endometrial carcinoma [J]. Journal of Shanghai Jiaotong University(Health Sciences), 2020, 40(12): 1677-1682. [6] Zhou Q, Li W, Kong D, et al. DACH1 suppresses epithelial to mesenchymal transition(EMT)through Notch1 pathway and reverses progestin resistance in endometrial carcinoma [J]. Cancer Med, 2019, 8(9): 4380-4388. [7] Ozawa-umeta H, Kishimoto A, Imaizumi A, et al. Curcumin β-D-glucuronide exhibits anti-tumor effects on oxaliplatin-resistant colon cancer with less toxicity in vivo [J]. Cancer Sci, 2020, 111(5): 1785-1793. [8] Zeng Y, Du Q, Zhang Z, et al. Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress [J]. Arch Biochem Biophys, 2020, 694: 108613. doi: 10.1016/j.abb.2020.108613 [9] Li W, Sun L, Lei J, et al. Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis [J]. Oncol Rep, 2020, 44(1): 382-392. [10] Liczbinski P, Michalowicz J, Bukowska B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research [J]. Phytother Res, 2020, 34(8): 1992-2005. [11] Patel SS, Acharya A, Ray RS, et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease [J]. Crit Rev Food Sci Nutr, 2020, 60(6): 887-939. [12] Barzegar A, Moosavi-Movahedi AA. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin [J]. PLoS One, 2011, 6(10): e26012. [13] Fathy Abd-Ellatef GE, Gazzano E, Chirio D, et al. Curcumin-loaded solid lipid Nanoparticles bypass P-Glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells [J]. Pharmaceutics, 2020, 12(2):96. doi: 10.3390/pharmaceutics12020096. [14] Chen P, Huang HP, Wang Y, et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death [J]. J Exp Clin Cancer Res, 2019, 38(1): 254. doi: 10.1186/s13046-019-1234-8. [15] Ashrafizadeh M, Zarrabi A, Hashemi F, et al. Curcumin in cancer therapy: a novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects [J]. Life Sci, 2020, 256:117984. doi: 10.1016/j.lfs.2020.117984. [16] He B, Wei W, Liu J, et al. Synergistic anticancer effect of curcumin and chemotherapy regimen FP in human gastric cancer MGC-803 cells [J]. Oncol Lett, 2017, 14(3): 3387-3394. [17] Yoshida K, Toden S, Ravindranathan P, et al. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression [J]. Carcinogenesis, 2017, 38(10): 1036-1046. [18] Papiez MA, Krzysciak W, Szade K, et al. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species [J]. Drug Des Devel Ther, 2016, 10:557-570. doi: 10.2147/DDDT.S92687.eCollection 2016. [19] Keyvani-Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells multidrug resistance: An update [J]. Phytother Res, 2020, 34(10): 2534-2556. [20] Bi M, Zhang Z, Jiang YZ, et al. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance [J]. Nat Cell Biol, 2020, 22(6): 701-715. [21] Cai H, Yan L, Liu N, et al. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway [J]. Biomed Pharmacother, 2020, 123: 109790. doi: 10.1016/j.biopha.2020.110077. [22] Vergani E, Dugo M, Cossa M, et al. miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators [J]. Cell Commun Signal, 2020, 18(1): 156. doi: 10.1186/s12964-020-00601-1. [23] Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer [J]. Acta Pharm Sin B, 2020, 10(2): 197-206. [24] Westerouen Van Meeteren MJ, Drenth JPH, Tjwa ETTL. Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis(NASH)[J]. Expert Opin Investig Drugs, 2020, 29(2): 117-123. [25] Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals [J]. Mol Cell Endocrinol, 2020, 502: 110665. doi: 10.1016/j.mce.2019.110665. [26] 崔明花, 付二花, 林贞花, 等. 姜黄素抗肿瘤药理作用的研究进展[J]. 中国临床药理学杂志, 2021, 37(2): 186-188. CUI Minghua, FU Erhua, LIN Zhenhua, et al. Research progress of antitumor pharmacological effects of curcumin [J]. The Chinese Journal of Clinical Pharmacology, 2021, 37(2): 186-188. |
[1] | 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102. |
[2] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[3] | 鹿群,赵璐璐. 子宫内膜癌、子宫内膜非典型增生保留生育功能后助孕策略[J]. 山东大学学报 (医学版), 2022, 60(9): 35-41. |
[4] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[5] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[6] | 李燕,刘静,李娟,杨秋红. 50例孕产妇血流感染临床特征及胎盘病理分析[J]. 山东大学学报 (医学版), 2022, 60(1): 48-54. |
[7] | 鞠建华,杨镇业,李青连,韩亚楠,李艳青,乔伊君,杨虎,张华然. 微生物药物研究开发现状与思考[J]. 山东大学学报 (医学版), 2021, 59(9): 43-50,63. |
[8] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
[9] | 哈春芳,李茹月. 卵巢癌耐药机制与靶向治疗策略的研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 117-123. |
[10] | 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110. |
[11] | 赵立红,赵书平,聂升刚,孙晶,姜同峰. 507例男性生殖道感染病原体分布及耐药特征[J]. 山东大学学报 (医学版), 2021, 59(1): 55-58. |
[12] | 熊艺璇,赵斌,贾凌璐,张文静,徐欣. 姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化[J]. 山东大学学报 (医学版), 2020, 58(5): 19-26. |
[13] | 孙艳婷,吴大玮,王晓斐,徐建,王睿. 新建医院ICU临床分离菌的分布及耐药变迁[J]. 山东大学学报 (医学版), 2020, 58(2): 64-71. |
[14] | 付振美,马铭泽. 溃疡性结肠炎患者肠黏膜P糖蛋白的表达及其临床意义[J]. 山东大学学报 (医学版), 2020, 58(12): 54-59. |
[15] | 张宁,杨燕,李锐,殷运红,李昊,曲仪庆. 慢阻肺患者感染鲍曼不动杆菌危险因素及耐药性分析[J]. 山东大学学报 (医学版), 2019, 57(9): 88-96. |
|